-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdensenet_blocks.py
241 lines (204 loc) · 9.92 KB
/
densenet_blocks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# -*- coding: utf-8 -*-
"""DenseNet models for Keras.
# Reference paper
- [Densely Connected Convolutional Networks]
(https://arxiv.org/abs/1608.06993) (CVPR 2017 Best Paper Award)
# Reference implementation
- [Torch DenseNets]
(https://github.com/liuzhuang13/DenseNet/blob/master/models/densenet.lua)
- [TensorNets]
(https://github.com/taehoonlee/tensornets/blob/master/tensornets/densenets.py)
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import tensorflow as tf
from keras import backend as K
from keras.models import Model
from keras.layers import Activation
from keras.layers import AveragePooling2D
from keras.layers import Add
from keras.layers import UpSampling2D
from keras.layers import Lambda
#from keras.layers import BatchNormalization
#from util import BatchNorm, BilinearUpsampling
from keras.layers import BatchNormalization as BatchNorm
from keras.layers import Concatenate
from keras.layers import Conv2D
from keras.layers import Dense
from keras.layers import GlobalAveragePooling2D
from keras.layers import Input
from keras.layers import MaxPooling2D
from keras.layers import ZeroPadding2D
def dense_block(x, blocks, name, train_bn):
"""A dense block.
# Arguments
x: input tensor.
blocks: integer, the number of building blocks.
name: string, block label.
# Returns
output tensor for the block.
"""
for i in range(blocks):
x = conv_block(x, 32, name=name + '_block' + str(i + 1), train_bn=train_bn)
return x
def transition_block(x, reduction, name, train_bn):
"""A transition block.
# Arguments
x: input tensor.
reduction: float, compression rate at transition layers.
name: string, block label.
# Returns
output tensor for the block.
"""
bn_axis = 3 if K.image_data_format() == 'channels_last' else 1
x = BatchNorm(axis=bn_axis, epsilon=1.001e-5,
name=name + '_bn')(x, training=train_bn)
x = Activation('relu', name=name + '_relu')(x)
skip = x = Conv2D(int(K.int_shape(x)[bn_axis] * reduction), 1, use_bias=False,
name=name + '_conv')(x)
x = AveragePooling2D(2, strides=2, name=name + '_pool')(x)
return skip, x
def conv_block(x, growth_rate, name, train_bn):
"""A building block for a dense block.
# Arguments
x: input tensor.
growth_rate: float, growth rate at dense layers.
name: string, block label.
# Returns
output tensor for the block.
import tensorflow as tf
"""
bn_axis = 3 if K.image_data_format() == 'channels_last' else 1
x1 = BatchNorm(axis=bn_axis, epsilon=1.001e-5,
name=name + '_0_bn')(x, training=train_bn)
x1 = Activation('relu', name=name + '_0_relu')(x1)
x1 = Conv2D(4 * growth_rate, 1, use_bias=False,
name=name + '_1_conv')(x1)
x1 = BatchNorm(axis=bn_axis, epsilon=1.001e-5,
name=name + '_1_bn')(x1, training=train_bn)
x1 = Activation('relu', name=name + '_1_relu')(x1)
x1 = ZeroPadding2D(padding=((1, 1), (1, 1)))(x1)
# x1 = Lambda(lambda x: tf.pad(x, [[0,0],[1,1],[1,1],[0,0]], mode='SYMMETRIC'))(x1)
x1 = Conv2D(growth_rate, 3, padding='valid', use_bias=False,
name=name + '_2_conv')(x1)
x = Concatenate(axis=bn_axis, name=name + '_concat')([x, x1])
return x
def DenseNet_encoder(blocks,
input_tensor,
pooling=None,
train_bn=False):
"""Instantiates the DenseNet architecture."""
bn_axis = 3 if K.image_data_format() == 'channels_last' else 1
x = ZeroPadding2D(padding=((3, 3), (3, 3)))(input_tensor)
# x = Lambda(lambda x: tf.pad(x, [[0,0],[3,3],[3,3],[0,0]], mode='SYMMETRIC'))(input_tensor)
x = Conv2D(64, 7, strides=2, use_bias=False, name='conv1/conv')(x)
x = BatchNorm(axis=bn_axis, epsilon=1.001e-5,
name='conv1/bn', )(x, training=train_bn)
R1 = x = Activation('relu', name='conv1/relu')(x)
x = ZeroPadding2D(padding=((1, 1), (1, 1)))(x)
x = MaxPooling2D(3, strides=2, name='pool1')(x)
R2 = x = dense_block(x, blocks[0], name='conv2', train_bn=train_bn)
_, x = transition_block(x, 0.5, name='pool2', train_bn=train_bn)
R3 = x = dense_block(x, blocks[1], name='conv3', train_bn=train_bn)
_, x = transition_block(x, 0.5, name='pool3', train_bn=train_bn)
R4 = x = dense_block(x, blocks[2], name='conv4', train_bn=train_bn)
_, x = transition_block(x, 0.5, name='pool4', train_bn=train_bn)
x = dense_block(x, blocks[3], name='conv5', train_bn=train_bn)
x = BatchNorm(axis=bn_axis, epsilon=1.001e-5,
name='bn')(x, training=train_bn)
if pooling == 'avg':
x = AveragePooling2D(7, name='avg_pool')(x)
elif pooling == 'max':
x = MaxPooling2D(7, name='max_pool')(x)
return [R1, R2, R3, R4], x
def fpn_side_output_block(deconv_input, upsample_input, block_name,
network_name, train_bn, use_bias, output_shape,
up_output=True, out_output=True, d=128):
prefix = network_name + '_side_' + block_name
if deconv_input.shape[3] == d:
x = deconv_input
else:
x = Conv2D(d, (1, 1), strides=(1, 1), padding='same',
name=prefix + '_conv1', use_bias=use_bias)(deconv_input)
if upsample_input != None:
x = Add(name=prefix+'_add')([x, upsample_input])
x = ZeroPadding2D(padding=((1, 1), (1, 1)))(x)
# x = Lambda(lambda x: tf.pad(x, [[0,0],[1,1],[1,1],[0,0]], mode='SYMMETRIC'))(x)
add = x = Conv2D(d, (3, 3), padding='valid',
name=prefix+'_conv2', use_bias=use_bias)(x)
else:
add = None
if out_output:
out = Conv2D(1, (1, 1), strides=(1, 1), padding='same',
name=prefix + '_conv3', use_bias=use_bias)(x)
out = Activation('sigmoid', name=prefix+'_sigmoid')(out)
# out = BilinearUpsampling(output_size=(output_shape[0], output_shape[1]),
# name=prefix+'_out')(out)
# out = UpSampling2D(data_format=K.image_data_format(),size=(1, 1),
# name=prefix+'_up')(out)
else:
out = None
if up_output:
up = UpSampling2D(data_format=K.image_data_format(),
name=prefix+'_up')(x)
else:
up = None
return add, up, out
def deconv_block(x, skip, network_name, fpn_d, train_bn):
bn_axis = 3 if K.image_data_format() == 'channels_last' else 1
x = UpSampling2D(2, data_format=K.image_data_format())(x)
if not skip is None:
channel = K.int_shape(skip)[bn_axis]
channel = fpn_d if channel < fpn_d else channel
#x = Conv2D(channel, (1, 1), name=network_name+'_conv',
#padding='same', use_bias=False)(x)
#x = Add(name=network_name+'_add')([x, skip])
x = Concatenate(axis=bn_axis)([x, skip])
x = Conv2D(channel, (1, 1), name=network_name+'_conv',
padding='same', use_bias=False)(x)
else:
channel = K.int_shape(x)[bn_axis]
channel = fpn_d if channel < fpn_d else channel
x = Conv2D(channel, (1, 1), name=network_name+'_conv', use_bias=False)(x)
x = BatchNorm(axis=bn_axis, epsilon=1.001e-5,
name=network_name+'_bn')(x, training=train_bn)
x = Activation('relu', name=network_name+'_relu')(x)
return x
def DenseNet_decoder(input_tensor,
skip_connection,
network_name,
output_dim,
fpn_d,
train_bn=False):
"""Instantiates the DenseNet architecture. (decoder part) """
bn_axis = 3 if K.image_data_format() == 'channels_last' else 1
R1, R2, R3, R4 = skip_connection
DC4 = x = deconv_block(input_tensor, R4, fpn_d=fpn_d,
network_name=network_name+'_deconv5', train_bn=train_bn)
DC3 = x = deconv_block(x, R3, fpn_d=fpn_d,
network_name=network_name+'_deconv4', train_bn=train_bn)
DC2 = x = deconv_block(x, R2, fpn_d=fpn_d,
network_name=network_name+'_deconv3', train_bn=train_bn)
DC1 = x = deconv_block(x, R1, fpn_d=fpn_d,
network_name=network_name+'_deconv2', train_bn=train_bn)
# We should get 256*256*64 at DC1
x = deconv_block(x, None, network_name=network_name+'_deconv1', fpn_d=fpn_d, train_bn=train_bn)
# FPN
up4 = Conv2D(fpn_d, (1, 1), padding='same', name=network_name+'_up4_conv', use_bias=True)(DC4)
up4 = Activation('relu', name=network_name+'_up4_relu')(up4)
up4 = UpSampling2D(data_format=K.image_data_format(), name=network_name+'_up4_up')(up4)
[_, up3, out_8] = fpn_side_output_block(DC3, up4, block_name='3', output_shape=output_dim,
network_name=network_name, d=fpn_d,
train_bn=train_bn, use_bias=True)
[_, up2, out_4] = fpn_side_output_block(DC2, up3, block_name='2', output_shape=output_dim,
network_name=network_name, d=fpn_d,
train_bn=train_bn, use_bias=True)
[_, up1, out_2] = fpn_side_output_block(DC1, up2, block_name='1', output_shape=output_dim,
network_name=network_name, d=fpn_d,
train_bn=train_bn, use_bias=True)
[add0, _, out] = fpn_side_output_block(x, up1, block_name='0', up_output=False, d=fpn_d,
network_name=network_name, output_shape=output_dim,
train_bn=train_bn, use_bias=True)
return [out, out_2, out_4, out_8, add0]