-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
594 lines (528 loc) · 23.9 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
import sys
import os
import math
import random
import numpy as np
import tensorflow as tf
import scipy
import skimage.color
import skimage.io
import skimage.transform
import urllib.request
import shutil
import warnings
import keras
import keras.backend as K
import keras.layers as KL
import keras.engine as KE
import keras.models as KM
import keras.callbacks as KC
#from keras.engine.topology import preprocess_weights_for_loading
from tensorflow.python.keras.saving.hdf5_format import preprocess_weights_for_loading
from keras.utils import plot_model, conv_utils
from keras.layers.core import Layer
#from keras.backend.common import normalize_data_format
############################################################
# Bilinear Upsampling Layer
############################################################
class Subone(Layer):
def __init__(self,**kwargs):
super().__init__(**kwargs)
def call(self, inputs):
var=K.ones_like(inputs)
return var-inputs
class BilinearUpsampling(KL.Layer):
"""Just a simple bilinear upsampling layer. Works only with TF.
Args:
upsampling: tuple of 2 numbers > 0. The upsampling ratio for h and w
output_size: used instead of upsampling arg if passed!
"""
def __init__(self, upsampling=(2, 2), output_size=None, data_format=None, **kwargs):
super(BilinearUpsampling, self).__init__(**kwargs)
#self.data_format = conv_utils.normalize_data_format(data_format)
#self.data_format = K.backend.common.normalize_data_format(data_format)
if keras.__version__ > "2.2.0":
from keras.backend import normalize_data_format
self.data_format = normalize_data_format(data_format)
else:
from keras.utils.conv_utils import normalize_data_format
self.data_format = normalize_data_format(data_format)
self.input_spec = KE.InputSpec(ndim=4)
if output_size:
self.output_size = conv_utils.normalize_tuple(
output_size, 2, 'output_size')
self.upsampling = None
else:
self.output_size = None
self.upsampling = conv_utils.normalize_tuple(
upsampling, 2, 'upsampling')
def compute_output_shape(self, input_shape):
if self.upsampling:
height = self.upsampling[0] * \
input_shape[1] if input_shape[1] is not None else None
width = self.upsampling[1] * \
input_shape[2] if input_shape[2] is not None else None
else:
height = self.output_size[0]
width = self.output_size[1]
return (input_shape[0],
height,
width,
input_shape[3])
def call(self, inputs):
if self.upsampling:
return tf.compat.v1.image.resize_bilinear(inputs, (inputs.shape[1] * self.upsampling[0],
inputs.shape[2] * self.upsampling[1]),
align_corners=True)
# return keras.layers.UpSampling2D(size=(self.upsampling[0], self.upsampling[1]))(inputs)
else:
return tf.compat.v1.image.resize_bilinear(inputs, (self.output_size[0],
self.output_size[1]),
align_corners=True)
#return keras.layers.UpSampling2D(size=(1, 1))(inputs)
def get_config(self):
config = {'upsampling': self.upsampling,
'output_size': self.output_size,
'data_format': self.data_format}
base_config = super(BilinearUpsampling, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
############################################################
# Batch Normalization Wrapper
############################################################
class BatchNorm(KL.BatchNormalization):
"""Extends the Keras BatchNormalization class to allow a central place
to make changes if needed.
Batch normalization has a negative effect on training if batches are small
so this layer is often frozen (via setting in Config class) and functions
as linear layer.
"""
def call(self, inputs, training=None):
"""
Note about training values:
None: Train BN layers. This is the normal mode
False: Freeze BN layers. Good when batch size is small
True: (don't use). Set layer in training mode even when inferencing
"""
return super(self.__class__, self).call(inputs, training=training)
############################################################
# Utility Functions
############################################################
def make_img_list(img_path):
if img_path[-3:] == 'txt':
img_list = []
with open(img_path, 'r') as f:
base = os.path.dirname(os.path.abspath(img_path))
for line in f:
item = []
for path in line.split(' '):
path = path.strip()
if not len(path):
continue
if not os.path.isabs(path):
path = os.path.join(base, path)
item.append(path)
if len(item) != 0:
img_list.append(item)
else:
img_list = [[img_path]]
return img_list
def make_image(tensor):
"""
Convert an numpy representation image to Image protobuf.
Copied from https://github.com/lanpa/tensorboard-pytorch/
"""
from PIL import Image
_, height, width, channel = tensor.shape
image = Image.fromarray(np.squeeze(tensor))
import io
output = io.BytesIO()
image.save(output, format='PNG')
image_string = output.getvalue()
output.close()
return tf.Summary.Image(height=height,
width=width,
colorspace=channel,
encoded_image_string=image_string)
class MiniValidator(KC.Callback):
def __init__(self, val_set, config, log_dir, stage, exe_rate=20):
super().__init__()
self.img_list = make_img_list(val_set)
self.exe_rate = exe_rate
self.output_shape = (config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1])
self.mean_pixel = config.MEAN_PIXEL
self.log_dir = log_dir
self.stage = stage
def on_batch_end(self, batch, logs={}):
def get_max(mask):
if mask.dtype == np.uint8:
return 255.0
elif mask.dtype == np.uint16:
return 65535.0
else:
raise "Unknown image format"
def load_image(image_path):
image = skimage.io.imread(image_path)
if image.ndim != 3:
image = skimage.color.gray2rgb(image)
if image.shape[-1] == 4:
image = image[..., :3]
return image
def load_mask(mask_path):
mask = skimage.io.imread(mask_path)
mask = mask.astype(np.float32) / get_max(mask)
if mask.ndim == 3:
mask = skimage.color.rgb2gray(mask) # 0~1
if mask.ndim == 2:
mask = mask[..., np.newaxis]
return mask
if batch % self.exe_rate != 0:
return
if self.stage == 'classifier':
output_name = ['FG', 'BG', 'FG_8', 'FG_4', 'FG_2', \
'BG_8', 'BG_4', 'BG_2', '1-matting_GT', 'FG_GT', 'BG_GT', 'ce_weight']
else:
output_name = ['FG', 'BG', 'matting_result', 'fusion_mask', '1-GT']
summary_value = []
# Randomly pick a picture
no = random.randint(1, len(self.img_list)) - 1
img_path = self.img_list[no]
tri_path = img_path[2]
gt_path = img_path[1]
img_path = img_path[0]
image = load_image(img_path)
mask = load_mask(gt_path)
'''
image = skimage.transform.resize(image=image, output_shape=self.output_shape,
preserve_range=True, mode='reflect', anti_aliasing=True)
fg = skimage.transform.resize(image=fg, output_shape=self.output_shape,
preserve_range=True, mode='reflect', anti_aliasing=True)
bg = skimage.transform.resize(image=bg, output_shape=self.output_shape,
preserve_range=True, mode='reflect', anti_aliasing=True)
trimap = skimage.transform.resize(image=trimap, output_shape=self.output_shape,
preserve_range=True, mode='reflect', anti_aliasing=False)
mask = skimage.transform.resize(image=mask, output_shape=self.output_shape,
preserve_range=True, mode='reflect', anti_aliasing=False)
'''
molded_image = [image - self.mean_pixel]
molded_mask = [mask]
# Pack into arrays
molded_images = np.stack(molded_image)
molded_masks = np.stack(molded_mask)
model = self.model.inner_model if hasattr(self.model,'inner_model') else self.model
output_list = model.predict([molded_images, molded_masks], verbose=0)
for j in range(0, len(output_name)):
summary_image = make_image(np.uint8(output_list[j]*255))
summary_value.append(tf.Summary.Value(
tag='MiniValid_'+output_name[j], image=summary_image))
summary = tf.Summary(value=summary_value)
writer = tf.summary.FileWriter(self.log_dir)
writer.add_summary(summary, batch)
writer.close()
return
def log(text, array=None):
"""Prints a text message. And, optionally, if a Numpy array is provided it
prints it's shape, min, and max values.
"""
if array is not None:
text = text.ljust(25)
text += ("shape: {:20} min: {:10.5f} max: {:10.5f} {}".format(
str(array.shape),
array.min() if array.size else "",
array.max() if array.size else "",
array.dtype))
print(text)
def resize_image(image, min_dim=None, max_dim=None, min_scale=None, mode="square"):
"""Resizes an image keeping the aspect ratio unchanged.
min_dim: if provided, resizes the image such that it's smaller
dimension == min_dim
max_dim: if provided, ensures that the image longest side doesn't
exceed this value.
min_scale: if provided, ensure that the image is scaled up by at least
this percent even if min_dim doesn't require it.
mode: Resizing mode.
none: No resizing. Return the image unchanged.
square: Resize and pad with zeros to get a square image
of size [max_dim, max_dim].
pad64: Pads width and height with zeros to make them multiples of 64.
If min_dim or min_scale are provided, it scales the image up
before padding. max_dim is ignored in this mode.
The multiple of 64 is needed to ensure smooth scaling of feature
maps up and down the 6 levels of the FPN pyramid (2**6=64).
crop: Picks random crops from the image. First, scales the image based
on min_dim and min_scale, then picks a random crop of
size min_dim x min_dim. Can be used in training only.
max_dim is not used in this mode.
Returns:
image: the resized image
window: (y1, x1, y2, x2). If max_dim is provided, padding might
be inserted in the returned image. If so, this window is the
coordinates of the image part of the full image (excluding
the padding). The x2, y2 pixels are not included.
scale: The scale factor used to resize the image
padding: Padding added to the image [(top, bottom), (left, right), (0, 0)]
"""
# Keep track of image dtype and return results in the same dtype
image_dtype = image.dtype
# Default window (y1, x1, y2, x2) and default scale == 1.
h, w = image.shape[:2]
window = (0, 0, h, w)
scale = 1
padding = [(0, 0), (0, 0), (0, 0)]
crop = None
if mode == "none":
return image, window, scale, padding, crop
# Scale?
if min_dim:
# Scale up but not down
scale = max(1, min_dim / min(h, w))
if min_scale and scale < min_scale:
scale = min_scale
# Does it exceed max dim?
if max_dim and mode == "square":
image_max = max(h, w)
if round(image_max * scale) > max_dim:
scale = max_dim / image_max
# Resize image using bilinear interpolation
if scale != 1:
image = skimage.transform.resize(
image, (round(h * scale), round(w * scale)),
order=1, mode="constant", preserve_range=True, anti_aliasing=False)
# Need padding or cropping?
if mode == "square":
# Get new height and width
h, w = image.shape[:2]
top_pad = (max_dim - h) // 2
bottom_pad = max_dim - h - top_pad
left_pad = (max_dim - w) // 2
right_pad = max_dim - w - left_pad
padding = [(top_pad, bottom_pad), (left_pad, right_pad), (0, 0)]
image = np.pad(image, padding, mode='constant', constant_values=0)
window = (top_pad, left_pad, h + top_pad, w + left_pad)
elif mode == "pad64":
h, w = image.shape[:2]
# Both sides must be divisible by 64
assert min_dim % 64 == 0, "Minimum dimension must be a multiple of 64"
# Height
if h % 64 > 0:
max_h = h - (h % 64) + 64
top_pad = (max_h - h) // 2
bottom_pad = max_h - h - top_pad
else:
top_pad = bottom_pad = 0
# Width
if w % 64 > 0:
max_w = w - (w % 64) + 64
left_pad = (max_w - w) // 2
right_pad = max_w - w - left_pad
else:
left_pad = right_pad = 0
padding = [(top_pad, bottom_pad), (left_pad, right_pad), (0, 0)]
image = np.pad(image, padding, mode='constant', constant_values=0)
window = (top_pad, left_pad, h + top_pad, w + left_pad)
elif mode == "crop":
# Pick a random crop
h, w = image.shape[:2]
y = random.randint(0, (h - min_dim))
x = random.randint(0, (w - min_dim))
crop = (y, x, min_dim, min_dim)
image = image[y:y + min_dim, x:x + min_dim]
window = (0, 0, min_dim, min_dim)
else:
raise Exception("Mode {} not supported".format(mode))
return image.astype(image_dtype), window, scale, padding, crop
def resize_mask(mask, scale, padding, crop=None):
"""Resizes a mask using the given scale and padding.
Typically, you get the scale and padding from resize_image() to
ensure both, the image and the mask, are resized consistently.
scale: mask scaling factor
padding: Padding to add to the mask in the form
[(top, bottom), (left, right), (0, 0)]
"""
# Suppress warning from scipy 0.13.0, the output shape of zoom() is
# calculated with round() instead of int()
with warnings.catch_warnings():
warnings.simplefilter("ignore")
mask = scipy.ndimage.zoom(mask, zoom=[scale, scale, 1], order=0)
if crop is not None:
y, x, h, w = crop
mask = mask[y:y + h, x:x + w]
else:
mask = np.pad(mask, padding, mode='constant', constant_values=0)
return mask
def mold_image(images, config):
"""Expects an RGB image (or array of images) and subtraces
the mean pixel and converts it to float. Expects image
colors in RGB order.
"""
return images.astype(np.float32) - config.MEAN_PIXEL
def _load_attributes_from_hdf5_group(group, name):
"""Loads attributes of the specified name from the HDF5 group.
This method deals with an inherent problem
of HDF5 file which is not able to store
data larger than HDF5_OBJECT_HEADER_LIMIT bytes.
# Arguments
group: A pointer to a HDF5 group.
name: A name of the attributes to load.
# Returns
data: Attributes data.
"""
if name in group.attrs:
data = [n.decode('utf8') for n in group.attrs[name]]
else:
data = []
chunk_id = 0
while ('%s%d' % (name, chunk_id)) in group.attrs:
data.extend([n.decode('utf8')
for n in group.attrs['%s%d' % (name, chunk_id)]])
chunk_id += 1
return data
def load_weights_from_hdf5_group_by_name(f, layers, partial_loading=False, verbose=0):
"""Implements name-based weight loading.
(instead of topological weight loading).
Layers that have no matching name are skipped.
# Arguments
f: A pointer to a HDF5 group.
layers: a list of target layers.
# Raises
ValueError: in case of mismatch between provided layers
and weights file.
"""
if 'keras_version' in f.attrs:
original_keras_version = f.attrs['keras_version'].decode('utf8')
else:
original_keras_version = '1'
if 'backend' in f.attrs:
original_backend = f.attrs['backend'].decode('utf8')
else:
original_backend = None
# New file format.
layer_names = _load_attributes_from_hdf5_group(f, 'layer_names')
# Reverse index of layer name to list of layers with name.
index = {}
for layer in layers:
if layer.name:
index.setdefault(layer.name, []).append(layer)
# We batch weight value assignments in a single backend call
# which provides a speedup in TensorFlow.
weight_value_tuples = []
loaded_layer = []
for k, name in enumerate(layer_names):
g = f[name]
weight_names = [n.decode('utf8') for n in g.attrs['weight_names']]
weight_values = [g[weight_name] for weight_name in weight_names]
# extra channel for conv1 and bn_data
if partial_loading:
if name == 'conv1/conv' and index[name][0].weights[0].shape[-1] != 64:
add_channel = index[name][0].weights[0].shape[-1] - 64
_zeros = np.zeros([(*index[name][0].weights[0].shape[:-1]), add_channel])
weight_values[0] = np.concatenate([
np.array(weight_values[0]), _zeros], axis=-1)
elif name == 'conv2_block1_1_conv' and index[name][0].weights[0].shape[-2] != 64:
add_channel = index[name][0].weights[0].shape[-2] - 64
_zeros = np.zeros([(*index[name][0].weights[0].shape[:-2]), \
add_channel, index[name][0].weights[0].shape[-1]])
weight_values[0] = np.concatenate([
np.array(weight_values[0]), _zeros], axis=-2)
elif (name == 'conv1/bn' or name == 'conv2_block1_0_bn') \
and index[name][0].weights[0].shape[-1] != 64:
add_channel = index[name][0].weights[0].shape[-1] - 64
_zeros = np.zeros(add_channel)
_ones = np.ones(add_channel)
weight_values[0] = np.concatenate([weight_values[0], _zeros])
weight_values[1] = np.concatenate([weight_values[1], _ones])
weight_values[2] = np.concatenate([weight_values[2], _zeros])
weight_values[3] = np.concatenate([weight_values[3], _ones])
for layer in index.get(name, []):
symbolic_weights = layer.weights
weight_values = preprocess_weights_for_loading(
layer,
weight_values,
original_keras_version,
original_backend)
if len(weight_values) != len(symbolic_weights):
raise ValueError('Layer #' + str(k) +
' (named "' + layer.name +
'") expects ' +
str(len(symbolic_weights)) +
' weight(s), but the saved weights' +
' have ' + str(len(weight_values)) +
' element(s).')
# Set values.
for i in range(len(weight_values)):
weight_value_tuples.append((symbolic_weights[i],
weight_values[i]))
if len(weight_values) != 0:
loaded_layer.append(name)
# for debugging purpose
if verbose > 0:
print (weight_value_tuples)
K.batch_set_value(weight_value_tuples)
return loaded_layer
#####################################################
def save_feature_maps(features, output_dir, name, normalize=True):
# features: batch_sizhe, h, w, c
channel = features.shape[-1] # channel last
save_dir = os.path.join(output_dir, "save_features")
if not os.path.exists(save_dir):
os.makedirs(save_dir)
save_dir = os.path.join(save_dir, name)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
for c in range(channel):
feature = features[0, :, :, c]
if normalize:
min_val = np.min(feature)
max_val = np.max(feature)
feature = (feature-min_val)*255.0 / (max_val - min_val)
feature = np.clip(feature, 0, 255)
skimage.io.imsave(os.path.join(save_dir, "%04d.jpg"%c), np.uint8(feature))
else:
skimage.io.imsave(os.path.join(save_dir, "%04d.jpg"%c), np.uint8(feature*255))
def save_feature_txt(features, name):
channel = features.shape[-1]
save_dir = "save_features"
if not os.path.exists(save_dir):
os.mkdir(save_dir)
save_dir = os.path.join(save_dir, name)
if not os.path.exists(save_dir):
os.mkdir(save_dir)
for c in range(channel):
feature = features[0, :, :, c]
np.savetxt(os.path.join(save_dir, "%04d.txt"%c), feature)
def generate_perfect_blending_weight(FG, BG, trimap):
FG1 = np.squeeze(FG)
FG2 = 1.0 - np.squeeze(BG)
trimap = np.squeeze(trimap)
blending_weight = np.random.rand(FG.shape[0], FG.shape[1])
visualize_blending_weight = np.random.randint(0, 255, size=(FG.shape[0], FG.shape[1], 3))
height = FG.shape[0]
width = FG.shape[1]
for h in range(height):
for w in range(width):
if trimap[h, w] > 0.8:
# definitely foreground
if FG1[h, w] > FG2[h, w]:
# choose the larger FG1
blending_weight[h, w] = 1.0
visualize_blending_weight[h, w] = [255, 0, 0]
elif FG1[h, w] < FG2[h, w]:
# choose the smaller FG2
blending_weight[h, w] = 0.0
visualize_blending_weight[h, w] = [0, 255, 0]
# else random
elif trimap[h, w] < 0.2:
# definitely background
if FG1[h, w] > FG2[h, w]:
blending_weight[h, w] = 0.0
visualize_blending_weight[h, w] = [0, 0, 255]
elif FG1[h, w] < FG2[h, w]:
blending_weight[h, w] = 1.0
visualize_blending_weight[h, w] = [0, 255, 255]
# else random
# else:
# only God knows.
# blending_weight = blending_weight * np.squeeze(heatmap)
# visualize_blending_weight[:, :, 0] = visualize_blending_weight[:, :, 0] * np.squeeze(heatmap)
# visualize_blending_weight[:, :, 1] = visualize_blending_weight[:, :, 1] * np.squeeze(heatmap)
# visualize_blending_weight[:, :, 2] = visualize_blending_weight[:, :, 2] * np.squeeze(heatmap)
return blending_weight, np.uint8(visualize_blending_weight)