-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathtrain.py
35 lines (23 loc) · 991 Bytes
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import tensorflow as tf
from data import train_images, train_labels, test_labels, test_images
DLEN = len(train_images.data[0])
DNUM = len(train_images.data)
x = tf.placeholder(tf.float32, [None, DLEN])
W = tf.Variable(tf.zeros([DLEN, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
y_ = tf.placeholder("float", [None, 10])
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
train_step = tf.train.GradientDescentOptimizer(0.001).minimize(cross_entropy)
saver = tf.train.Saver()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for i in range(DNUM):
batch_xs = [train_images.data[i]]
batch_ys = [train_labels.data[i]]
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print(sess.run(accuracy, feed_dict={x: test_images.data, y_: test_labels.data}))
saver.save(sess, 'model/model')
sess.close()