@@ -1122,7 +1122,7 @@ def _copy_listed(self, names: Iterable[Hashable]) -> Self:
1122
1122
coord_names .add (var_name )
1123
1123
if (var_name ,) == var .dims :
1124
1124
index , index_vars = create_default_index_implicit (var , names )
1125
- indexes .update ({ k : index for k in index_vars } )
1125
+ indexes .update (dict . fromkeys ( index_vars , index ) )
1126
1126
variables .update (index_vars )
1127
1127
coord_names .update (index_vars )
1128
1128
@@ -3012,7 +3012,7 @@ def head(
3012
3012
if not isinstance (indexers , int ) and not is_dict_like (indexers ):
3013
3013
raise TypeError ("indexers must be either dict-like or a single integer" )
3014
3014
if isinstance (indexers , int ):
3015
- indexers = { dim : indexers for dim in self .dims }
3015
+ indexers = dict . fromkeys ( self .dims , indexers )
3016
3016
indexers = either_dict_or_kwargs (indexers , indexers_kwargs , "head" )
3017
3017
for k , v in indexers .items ():
3018
3018
if not isinstance (v , int ):
@@ -3100,7 +3100,7 @@ def tail(
3100
3100
if not isinstance (indexers , int ) and not is_dict_like (indexers ):
3101
3101
raise TypeError ("indexers must be either dict-like or a single integer" )
3102
3102
if isinstance (indexers , int ):
3103
- indexers = { dim : indexers for dim in self .dims }
3103
+ indexers = dict . fromkeys ( self .dims , indexers )
3104
3104
indexers = either_dict_or_kwargs (indexers , indexers_kwargs , "tail" )
3105
3105
for k , v in indexers .items ():
3106
3106
if not isinstance (v , int ):
@@ -3186,7 +3186,7 @@ def thin(
3186
3186
):
3187
3187
raise TypeError ("indexers must be either dict-like or a single integer" )
3188
3188
if isinstance (indexers , int ):
3189
- indexers = { dim : indexers for dim in self .dims }
3189
+ indexers = dict . fromkeys ( self .dims , indexers )
3190
3190
indexers = either_dict_or_kwargs (indexers , indexers_kwargs , "thin" )
3191
3191
for k , v in indexers .items ():
3192
3192
if not isinstance (v , int ):
@@ -4029,7 +4029,7 @@ def _rename_indexes(
4029
4029
for index , coord_names in self .xindexes .group_by_index ():
4030
4030
new_index = index .rename (name_dict , dims_dict )
4031
4031
new_coord_names = [name_dict .get (k , k ) for k in coord_names ]
4032
- indexes .update ({ k : new_index for k in new_coord_names } )
4032
+ indexes .update (dict . fromkeys ( new_coord_names , new_index ) )
4033
4033
new_index_vars = new_index .create_variables (
4034
4034
{
4035
4035
new : self ._variables [old ]
@@ -4315,7 +4315,7 @@ def swap_dims(
4315
4315
variables [current_name ] = var
4316
4316
else :
4317
4317
index , index_vars = create_default_index_implicit (var )
4318
- indexes .update ({ name : index for name in index_vars } )
4318
+ indexes .update (dict . fromkeys ( index_vars , index ) )
4319
4319
variables .update (index_vars )
4320
4320
coord_names .update (index_vars )
4321
4321
else :
@@ -4474,7 +4474,7 @@ def expand_dims(
4474
4474
elif isinstance (dim , Sequence ):
4475
4475
if len (dim ) != len (set (dim )):
4476
4476
raise ValueError ("dims should not contain duplicate values." )
4477
- dim = { d : 1 for d in dim }
4477
+ dim = dict . fromkeys ( dim , 1 )
4478
4478
4479
4479
dim = either_dict_or_kwargs (dim , dim_kwargs , "expand_dims" )
4480
4480
assert isinstance (dim , MutableMapping )
@@ -4700,7 +4700,7 @@ def set_index(
4700
4700
for n in idx .index .names :
4701
4701
replace_dims [n ] = dim
4702
4702
4703
- new_indexes .update ({ k : idx for k in idx_vars } )
4703
+ new_indexes .update (dict . fromkeys ( idx_vars , idx ) )
4704
4704
new_variables .update (idx_vars )
4705
4705
4706
4706
# re-add deindexed coordinates (convert to base variables)
@@ -4816,7 +4816,7 @@ def drop_or_convert(var_names):
4816
4816
# instead replace it by a new (multi-)index with dropped level(s)
4817
4817
idx = index .keep_levels (keep_level_vars )
4818
4818
idx_vars = idx .create_variables (keep_level_vars )
4819
- new_indexes .update ({ k : idx for k in idx_vars } )
4819
+ new_indexes .update (dict . fromkeys ( idx_vars , idx ) )
4820
4820
new_variables .update (idx_vars )
4821
4821
if not isinstance (idx , PandasMultiIndex ):
4822
4822
# multi-index reduced to single index
@@ -4996,7 +4996,7 @@ def reorder_levels(
4996
4996
level_vars = {k : self ._variables [k ] for k in order }
4997
4997
idx = index .reorder_levels (level_vars )
4998
4998
idx_vars = idx .create_variables (level_vars )
4999
- new_indexes .update ({ k : idx for k in idx_vars } )
4999
+ new_indexes .update (dict . fromkeys ( idx_vars , idx ) )
5000
5000
new_variables .update (idx_vars )
5001
5001
5002
5002
indexes = {k : v for k , v in self ._indexes .items () if k not in new_indexes }
@@ -5104,7 +5104,7 @@ def _stack_once(
5104
5104
if len (product_vars ) == len (dims ):
5105
5105
idx = index_cls .stack (product_vars , new_dim )
5106
5106
new_indexes [new_dim ] = idx
5107
- new_indexes .update ({ k : idx for k in product_vars } )
5107
+ new_indexes .update (dict . fromkeys ( product_vars , idx ) )
5108
5108
idx_vars = idx .create_variables (product_vars )
5109
5109
# keep consistent multi-index coordinate order
5110
5110
for k in idx_vars :
@@ -5351,7 +5351,7 @@ def _unstack_full_reindex(
5351
5351
# TODO: we may depreciate implicit re-indexing with a pandas.MultiIndex
5352
5352
xr_full_idx = PandasMultiIndex (full_idx , dim )
5353
5353
indexers = Indexes (
5354
- { k : xr_full_idx for k in index_vars } ,
5354
+ dict . fromkeys ( index_vars , xr_full_idx ) ,
5355
5355
xr_full_idx .create_variables (index_vars ),
5356
5356
)
5357
5357
obj = self ._reindex (
@@ -10052,7 +10052,7 @@ def weighted(self, weights: DataArray) -> DatasetWeighted:
10052
10052
--------
10053
10053
:func:`DataArray.weighted <DataArray.weighted>`
10054
10054
10055
- :ref:`comput .weighted`
10055
+ :ref:`compute .weighted`
10056
10056
User guide on weighted array reduction using :py:func:`~xarray.Dataset.weighted`
10057
10057
10058
10058
:doc:`xarray-tutorial:fundamentals/03.4_weighted`
0 commit comments