forked from drsagitn/anomaly-detection-and-localization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdraft_classifier.py
438 lines (352 loc) · 17.7 KB
/
draft_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
from dataset import preprocess_data
import os
from keras import backend as K
import matplotlib
matplotlib.use('Agg')
assert(K.image_data_format() == 'channels_last')
def get_model2(t):
from keras.models import Model
from keras.layers.convolutional import Conv2D, Conv2DTranspose
from keras.layers.convolutional_recurrent import ConvLSTM2D
from keras.layers.normalization import BatchNormalization
from keras.layers.wrappers import TimeDistributed
from keras.layers.core import Activation
from keras.layers import Input
input_tensor = Input(shape=(t, 160, 240, 1))
conv1 = TimeDistributed(Conv2D(128, kernel_size=(7, 7), padding='same', strides=(4, 4), name='conv1'),
input_shape=(t, 160, 240, 1))(input_tensor)
conv1 = TimeDistributed(BatchNormalization())(conv1)
conv1 = TimeDistributed(Activation('relu'))(conv1)
conv2 = TimeDistributed(Conv2D(64, kernel_size=(5, 5), padding='same', strides=(2, 2), name='conv2'))(conv1)
conv2 = TimeDistributed(BatchNormalization())(conv2)
conv2 = TimeDistributed(Activation('relu'))(conv2)
convlstm1 = ConvLSTM2D(64, kernel_size=(3, 3), padding='same', return_sequences=True, name='convlstm1')(conv2)
convlstm2 = ConvLSTM2D(32, kernel_size=(3, 3), padding='same', return_sequences=True, name='convlstm2')(convlstm1)
convlstm3 = ConvLSTM2D(64, kernel_size=(3, 3), padding='same', return_sequences=True, name='convlstm3')(convlstm2)
deconv1 = TimeDistributed(Conv2DTranspose(128, kernel_size=(5, 5), padding='same', strides=(2, 2), name='deconv1'))(convlstm3)
deconv1 = TimeDistributed(BatchNormalization())(deconv1)
deconv1 = TimeDistributed(Activation('relu'))(deconv1)
decoded = TimeDistributed(Conv2DTranspose(1, kernel_size=(11, 11), padding='same', strides=(4, 4), name='deconv2'))(
deconv1)
return Model(inputs=input_tensor, outputs=decoded)
def get_model(t):
from keras.models import Model
from keras.layers.convolutional import Conv2D, Conv2DTranspose
from keras.layers.convolutional_recurrent import ConvLSTM2D
from keras.layers.normalization import BatchNormalization
from keras.layers.wrappers import TimeDistributed
from keras.layers.core import Activation
from keras.layers import Input
input_tensor = Input(shape=(t, 160, 240, 1))
conv1 = TimeDistributed(Conv2D(128, kernel_size=(11, 11), padding='same', strides=(4, 4), name='conv1'),
input_shape=(t, 160, 240, 1))(input_tensor)
conv1 = TimeDistributed(BatchNormalization())(conv1)
conv1 = TimeDistributed(Activation('relu'))(conv1)
conv2 = TimeDistributed(Conv2D(64, kernel_size=(5, 5), padding='same', strides=(2, 2), name='conv2'))(conv1)
conv2 = TimeDistributed(BatchNormalization())(conv2)
conv2 = TimeDistributed(Activation('relu'))(conv2)
convlstm1 = ConvLSTM2D(64, kernel_size=(3, 3), padding='same', return_sequences=True, name='convlstm1')(conv2)
convlstm2 = ConvLSTM2D(32, kernel_size=(3, 3), padding='same', return_sequences=True, name='convlstm2')(convlstm1)
convlstm3 = ConvLSTM2D(64, kernel_size=(3, 3), padding='same', return_sequences=True, name='convlstm3')(convlstm2)
deconv1 = TimeDistributed(Conv2DTranspose(128, kernel_size=(5, 5), padding='same', strides=(2, 2), name='deconv1'))(convlstm3)
deconv1 = TimeDistributed(BatchNormalization())(deconv1)
deconv1 = TimeDistributed(Activation('relu'))(deconv1)
decoded = TimeDistributed(Conv2DTranspose(1, kernel_size=(11, 11), padding='same', strides=(4, 4), name='deconv2'))(
deconv1)
return Model(inputs=input_tensor, outputs=decoded)
def compile_model(model, loss, optimizer):
"""Compiles the given model (from get_model) with given loss (from get_loss) and optimizer (from get_optimizer)
"""
from keras import optimizers
model.summary()
if optimizer == 'sgd':
opt = optimizers.SGD(nesterov=True)
else:
opt = optimizer
model.compile(loss=loss, optimizer=opt)
def train(dataset, job_folder, logger, video_root_path='VIDEO_ROOT_PATH'):
"""Build and train the model
"""
import yaml
import numpy as np
from keras.callbacks import ModelCheckpoint, EarlyStopping
from custom_callback import LossHistory
import matplotlib.pyplot as plt
from keras.utils.io_utils import HDF5Matrix
logger.debug("Loading configs from {}".format(os.path.join(job_folder, 'config.yml')))
with open(os.path.join(job_folder, 'config.yml'), 'r') as ymlfile:
cfg = yaml.load(ymlfile)
nb_epoch = cfg['epochs']
batch_size = cfg['batch_size']
loss = cfg['cost']
optimizer = cfg['optimizer']
time_length = cfg['time_length']
# shuffle = cfg['shuffle']
# logger.info("Building model of type {} and activation {}".format(model_type, activation))
model = get_model(time_length)
logger.info("Compiling model with {} and {} optimizer".format(loss, optimizer))
compile_model(model, loss, optimizer)
logger.info("Saving model configuration to {}".format(os.path.join(job_folder, 'model.yml')))
yaml_string = model.to_yaml()
with open(os.path.join(job_folder, 'model.yml'), 'w') as outfile:
yaml.dump(yaml_string, outfile)
logger.info("Preparing training and testing data")
preprocess_data(logger, dataset, time_length, video_root_path)
data = HDF5Matrix(os.path.join(video_root_path, '{0}/{0}_train_t{1}.h5'.format(dataset, time_length)), 'data')
snapshot = ModelCheckpoint(os.path.join(job_folder,
'model_snapshot_e{epoch:03d}_{val_loss:.6f}.h5'))
earlystop = EarlyStopping(patience=5)
history_log = LossHistory(job_folder=job_folder, logger=logger)
logger.info("Initializing training...")
history = model.fit(
data, data,
batch_size=batch_size,
epochs=nb_epoch,
validation_split=0.15,
shuffle='batch',
callbacks=[snapshot, earlystop, history_log]
)
logger.info("Training completed!")
np.save(os.path.join(job_folder, 'train_profile.npy'), history.history)
n_epoch = len(history.history['loss'])
logger.info("Plotting training profile for {} epochs".format(n_epoch))
plt.plot(range(1, n_epoch+1),
history.history['val_loss'],
'g-',
label='Val Loss')
plt.plot(range(1, n_epoch+1),
history.history['loss'],
'g--',
label='Training Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.savefig(os.path.join(job_folder, 'train_val_loss.png'))
def get_gt_range(dataset, vid_idx):
import numpy as np
ret = np.loadtxt('VIDEO_ROOT_PATH/{0}/gt_files/gt_{0}_vid{1:02d}.txt'.format(dataset, vid_idx+1))
if(ret.shape.__len__() == 1):
return [ret]
return ret
def get_gt_vid(dataset, vid_idx, pred_vid):
import numpy as np
if dataset in ("indoor", "plaza", "lawn"):
gt_vid = np.load('/share/data/groundtruths/{0}_test_gt.npy'.format(dataset))
else:
gt_vid_raw = np.loadtxt('VIDEO_ROOT_PATH/{0}/gt_files/gt_{0}_vid{1:02d}.txt'.format(dataset, vid_idx+1))
gt_vid = np.zeros_like(pred_vid)
try:
for event in range(gt_vid_raw.shape[0]):
start = int(gt_vid_raw[event, 0]) - 1
end = int(gt_vid_raw[event, 1])
gt_vid[start:end] = 1
except IndexError:
start = int(gt_vid_raw[0])
end = int(gt_vid_raw[1])
gt_vid[start:end] = 1
return gt_vid
def get_gt_pixel(dataset, vid_idx, video_root_path):
from skimage.io import imread
import os
from skimage.transform import resize
import numpy as np
video_gt_dir = os.path.join(video_root_path, dataset, "gt", 'Test{0:03d}_gt'.format(vid_idx+1))
if not os.path.isdir(video_gt_dir):
return None
gt_vid = []
for file in sorted(os.listdir(video_gt_dir)):
frame_value = imread(os.path.join(video_gt_dir, file), as_gray=True)/255
frame_value = resize(frame_value, (160, 240), mode='reflect')
gt_vid.append(np.round(frame_value))
return gt_vid
def compute_eer(far, frr):
cords = zip(far, frr)
min_dist = 999999
for item in cords:
item_far, item_frr = item
dist = abs(item_far-item_frr)
if dist < min_dist:
min_dist = dist
eer = (item_far + item_frr) / 2
return eer
def calc_auc_pixel(logger, dataset, n_vid, save_path, video_root_path="VIDEO_ROOT_PATH"):
import numpy as np
from sklearn.metrics import roc_auc_score, roc_curve, precision_recall_curve, auc, average_precision_score
import matplotlib.pyplot as plt
all_gt = []
all_pred = []
for vid in range(n_vid):
gt_vid = get_gt_pixel(dataset, vid, video_root_path)
if gt_vid is not None:
pred_vid = np.load(os.path.join(save_path, 'pixel_costs_{0}_video_{1:02d}.npy'.format(dataset, vid+1)))
all_gt.append(gt_vid)
all_pred.append(pred_vid)
all_gt = np.asarray(all_gt)
all_pred = np.asarray(all_pred)
all_gt = np.concatenate(all_gt).ravel()
all_pred = np.concatenate(all_pred).ravel()
# auc = roc_auc_score(all_gt, all_pred)
# fpr, tpr, thresholds = roc_curve(all_gt, all_pred, pos_label=1)
# frr = 1 - tpr
# far = fpr
# eer = compute_eer(far, frr)
precision, recall, threshold = precision_recall_curve(all_gt, all_pred)
auc = auc(recall, precision)
ap = average_precision_score(all_gt, all_pred)
logger.info("Dataset {}: Overall Pixel AUC = {:.2f}%, Overall Pixel EER = {:.2f}%".format(dataset, auc*100, ap*100))
plt.plot(recall, precision)
plt.plot([0,1],[1,0],'--')
plt.xlim(0,1.01)
plt.ylim(0,1.01)
plt.title('{0} AUC: {1:.3f}, EER: {2:.3f}'.format(dataset, auc, ap))
plt.savefig(os.path.join(save_path, 'scores','{}_pixel_auc.png'.format(dataset)))
plt.close()
return auc, ap
def calc_auc_overall(logger, dataset, n_vid, save_path):
import numpy as np
from sklearn.metrics import roc_auc_score, roc_curve, precision_recall_curve
import matplotlib.pyplot as plt
all_gt = []
all_pred = []
for vid in range(n_vid):
pred_vid = np.loadtxt(os.path.join(save_path, 'frame_costs_{0}_video_{1:02d}.txt'.format(dataset, vid+1)))
gt_vid = get_gt_vid(dataset, vid, pred_vid)
all_gt.append(gt_vid)
all_pred.append(pred_vid)
all_gt = np.asarray(all_gt)
all_pred = np.asarray(all_pred)
all_gt = np.concatenate(all_gt).ravel()
all_pred = np.concatenate(all_pred).ravel()
auc = roc_auc_score(all_gt, all_pred)
fpr, tpr, thresholds = roc_curve(all_gt, all_pred, pos_label=1)
frr = 1 - tpr
far = fpr
eer = compute_eer(far, frr)
logger.info("Dataset {}: Overall AUC = {:.2f}%, Overall EER = {:.2f}%".format(dataset, auc*100, eer*100))
plt.plot(fpr, tpr)
plt.plot([0,1],[1,0],'--')
plt.xlim(0,1.01)
plt.ylim(0,1.01)
plt.title('{0} AUC: {1:.3f}, EER: {2:.3f}'.format(dataset, auc, eer))
plt.savefig(os.path.join(save_path, 'scores','{}_auc.png'.format(dataset)))
plt.close()
return auc, eer
def reconstructPrediction(prediction, out_dir):
import numpy as np
from scipy.misc import imresize, imsave
import os
predicted_frames = imresize(np.expand_dims(prediction, 1), (num_of_frame, 1))
file_size = predicted_frames.shape(0)
t = predicted_frames.shape(1)
for vol in range(file_size):
for i in range(t):
predicted_frames[vol + i, :, :, :] += prediction[vol][i]
for i in range(file_size+t):
image_path = os.path.join(out_dir, "pred{0}.png".format(i))
imsave(image_path, predicted_frames[i])
def test(logger, dataset, t, job_uuid, epoch, val_loss, visualize_score=True, visualize_frame=False,
video_root_path='VIDEO_ROOT_PATH'):
import numpy as np
from keras.models import load_model
import os
import h5py
from keras.utils.io_utils import HDF5Matrix
import matplotlib.pyplot as plt
from scipy.misc import imresize
n_videos = {'avenue': 21, 'enter': 6, 'exit': 4, 'UCSD_ped1': 36, 'UCSD_ped2': 12}
test_dir = os.path.join(video_root_path, '{0}/testing_h5_t{1}'.format(dataset, t))
job_folder = os.path.join('logs/{}/jobs'.format(dataset), job_uuid)
model_filename = 'model_snapshot_e{:03d}_{:.6f}.h5'.format(epoch, val_loss)
temporal_model = load_model(os.path.join(job_folder, model_filename))
save_path = os.path.join(job_folder, 'result', str(epoch))
os.makedirs(save_path, exist_ok=True)
os.makedirs(os.path.join(save_path, 'vid'), exist_ok=True)
os.makedirs(os.path.join(save_path, 'scores'), exist_ok=True)
os.makedirs(os.path.join(save_path, 'reconstruction'), exist_ok=True)
for videoid in range(n_videos[dataset]):
videoname = '{0}_{1:02d}.h5'.format(dataset, videoid+1)
filepath = os.path.join(test_dir, videoname)
logger.info("==> {}".format(filepath))
f = h5py.File(filepath, 'r')
filesize = f['data'].shape[0]
f.close()
# gt_vid_raw = np.loadtxt('/share/data/groundtruths/gt_{0}_vid{1:02d}.txt'.format(dataset, videoid+1))
logger.debug("Predicting using {}".format(os.path.join(job_folder, model_filename)))
X_test = HDF5Matrix(filepath, 'data')
res = temporal_model.predict(X_test, batch_size=4)
X_test = np.array(X_test)
reconstructPrediction(res, filesize+t, os.path.join(save_path, 'reconstruction'))
if False: #visualize_score:
logger.debug("Calculating volume reconstruction error")
#method1
vol_costs = np.zeros((filesize,))
for j in range(filesize):
vol_costs[j] = np.sum((np.squeeze(res[j])-np.squeeze(X_test[j]))**2)
raw_costs = imresize(np.expand_dims(vol_costs, 1), (filesize + t, 1))
raw_costs = np.squeeze(raw_costs)
file_name_prefix = 'vol_costs_{0}_video'.format(dataset)
np.savetxt(os.path.join(save_path,file_name_prefix+'_'+'%02d'%(videoid+1)+'.txt'),vol_costs)
logger.debug("Calculating frame reconstruction error")
#method2
#count = 0
#pixel_costs = np.zeros((filesize + t, 160, 240, 1))
#raw_costs = np.zeros(filesize + t)
#for vol in range(filesize):
# for i in range(t):
# errA = np.sqrt((res[count, i, :, :, :] - X_test[count, i, :, :, :])**2)
# # errA = errA * (errA > 0.2)
# pixel_costs[vol + i, :, :, :] += errA
# count += 1
#for i in range(filesize+t):
# raw_costs[i] = np.sum(pixel_costs[i])
#method3
# raw_costs = np.zeros((filesize,))
# for j in range(filesize):
# raw_costs[j] = 10*np.log10((np.max(res[j])**2)/(np.sum((np.squeeze(res[j])-np.squeeze(X_test[j]))**2)/res[j].size))
# raw_costs = imresize(np.expand_dims(raw_costs, 1), (filesize + t, 1))
# raw_costs = np.squeeze(raw_costs)
file_name_prefix = 'frame_costs_{0}_video'.format(dataset)
np.savetxt(os.path.join(save_path, file_name_prefix+'_'+'%02d'%(videoid+1)+'.txt'), raw_costs)
score_vid = raw_costs - min(raw_costs)
score_vid = 1 - (score_vid / max(score_vid))
file_name_prefix = 'frame_costs_scaled_{0}_video'.format(dataset)
np.savetxt(os.path.join(save_path, file_name_prefix + '_' + '%02d' % (videoid + 1) + '.txt'), 1-score_vid)
logger.debug("Plotting frame reconstruction error")
plt.figure(figsize=(10, 3))
plt.plot(np.arange(1, raw_costs.shape[0]+1), raw_costs)
plt.savefig(os.path.join(save_path, '{}_video_{:02d}_err.png'.format(dataset, videoid+1)))
plt.clf()
logger.debug("Plotting regularity scores")
plt.figure(figsize=(10, 3))
ax = plt.subplot(111)
box = ax.get_position()
ax.set_position([box.x0, box.y0 + box.height*0.1, box.width, box.height*0.9])
ax.plot(np.arange(1, score_vid.shape[0]+1), score_vid, color='b', linewidth=2.0)
plt.xlabel('Frame number')
plt.ylabel('Regularity score')
plt.ylim(0, 1)
plt.xlim(1, score_vid.shape[0]+1)
vid_raw = get_gt_range(dataset, videoid)
for event in vid_raw:
plt.fill_between(np.arange(event[0], event[1]), 0, 1, facecolor='red', alpha=0.4)
plt.savefig(os.path.join(save_path, 'scores','scores_{0}_video_{1:02d}.png'.format(dataset, videoid+1)), dpi=300)
plt.close()
if False:
logger.debug("Calculating pixel reconstruction error")
count = 0
pixel_costs = np.zeros((filesize + t, 160, 240, 1))
for vol in range(filesize):
for i in range(t):
pixel_costs[vol+i, :, :, :] += np.sqrt((res[count, i, :, :, :] - X_test[count, i, :, :, :])**2)
count += 1
file_name_prefix = 'pixel_costs_{0}_video'.format(dataset)
np.save(os.path.join(save_path,file_name_prefix+'_'+'%02d'%(videoid+1)+'.npy'),pixel_costs)
logger.debug("Drawing pixel reconstruction error")
for idx in range(filesize+t):
plt.imshow(np.squeeze(pixel_costs[idx]), vmin=np.amin(pixel_costs), vmax=np.amax(pixel_costs), cmap='jet')
plt.colorbar()
plt.savefig(os.path.join(save_path, 'vid', '{}_err_vid{:02d}_frm{:03d}.png'.format(dataset, videoid+1, idx+1)))
plt.clf()
logger.info("{}: Calculating overall metrics".format(dataset))
auc_overall, eer_overall = calc_auc_overall(logger, dataset, n_videos[dataset], save_path)
auc_overall, eer_overall = calc_auc_pixel(logger, dataset, n_videos[dataset], save_path)