Skip to content

Commit 47db3cf

Browse files
committed
updated equation number to attempt to fix latex rendering
1 parent 7d0b2d9 commit 47db3cf

File tree

2 files changed

+14
-14
lines changed

2 files changed

+14
-14
lines changed

examples/case_studies/ssm_hurricane_tracking.ipynb

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -24,11 +24,11 @@
2424
"As a brief introduction to SSMs, the general idea is that we define our system using two equations.<br> \n",
2525
"The state equation [1] and the observation equation [2]. \n",
2626
"$$\n",
27-
"x_{t+1} = A_{t}x_{t} + c_{t} + R_{t}\\epsilon_{t} \\quad [1]\n",
27+
"x_{t+1} = A_{t}x_{t} + c_{t} + R_{t}\\epsilon_{t} \\quad (1)\n",
2828
"$$ \n",
2929
"\n",
3030
"$$\n",
31-
"y_{t} = Z_{t}x_{t} + d_{t} + \\eta_{t} \\quad [2]\n",
31+
"y_{t} = Z_{t}x_{t} + d_{t} + \\eta_{t} \\quad (2)\n",
3232
"$$\n",
3333
"\n",
3434
"The process/state covariance is given by $\\epsilon_{t} \\sim N(0, Q_{t})$ where $Q_{t}$ is the process/state innovations and the observation/measurement covariance is given by $\\eta_{t} \\sim N(0, H_{t})$ where $H_{t}$ describes the uncertainty in the measurement device or measurement procedure. \n",
@@ -63,11 +63,11 @@
6363
"The following equations define the process:\n",
6464
"|Description|Equation|\n",
6565
"| --- | --- |\n",
66-
"|Predict the next state vector| $\\hat{x}_{t+1\\|t} = A_{t}\\hat{x}_{t\\|t} \\quad [3]$ |\n",
67-
"|Predict the next state/process covariance| $P_{t+1\\|t} = A_{t}P_{t+1\\|t}A_{t}^{T} + Q \\quad [4]$ |\n",
68-
"|Compute Kalman Gain | $K_{t} = P_{t\\|t-1}Z^{T}(ZP_{t\\|t-1}Z^{T} + H_{t})^{-1} \\quad [5]$ |\n",
69-
"|Estimate current state vector| $\\hat{x}_{t\\|t} = \\hat{x}_{t\\|t-1} + K_{t}(y_{t} - Z\\hat{x}_{t\\|t-1}) \\quad [6]$ |\n",
70-
"|Estimate current state/process covariance| $P_{t\\|t} = (I - K_{t}Z_{t})P_{t\\|t-1}(I - K_{t}Z_{t})^{T} + K_{t}H_{t}K_{t}^{T} \\quad [7]$ |\n",
66+
"|Predict the next state vector| $\\hat{x}_{t+1\\|t} = A_{t}\\hat{x}_{t\\|t} \\quad (3)$ |\n",
67+
"|Predict the next state/process covariance| $P_{t+1\\|t} = A_{t}P_{t+1\\|t}A_{t}^{T} + Q \\quad (4)$ |\n",
68+
"|Compute Kalman Gain | $K_{t} = P_{t\\|t-1}Z^{T}(ZP_{t\\|t-1}Z^{T} + H_{t})^{-1} \\quad (5)$ |\n",
69+
"|Estimate current state vector| $\\hat{x}_{t\\|t} = \\hat{x}_{t\\|t-1} + K_{t}(y_{t} - Z\\hat{x}_{t\\|t-1}) \\quad (6)$ |\n",
70+
"|Estimate current state/process covariance| $P_{t\\|t} = (I - K_{t}Z_{t})P_{t\\|t-1}(I - K_{t}Z_{t})^{T} + K_{t}H_{t}K_{t}^{T} \\quad (7)$ |\n",
7171
"\n",
7272
":::{note}\n",
7373
"We wrote the equation for $P_{t\\|t}$ above using Joseph form, which is more numerically stable but also wordier. In different texts you may encounter this equation written in \"standard\" form.\n",

examples/case_studies/ssm_hurricane_tracking.myst.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -30,11 +30,11 @@ In this case study we are going to forecast the paths of hurricanes by applying
3030
As a brief introduction to SSMs, the general idea is that we define our system using two equations.<br>
3131
The state equation [1] and the observation equation [2].
3232
$$
33-
x_{t+1} = A_{t}x_{t} + c_{t} + R_{t}\epsilon_{t} \quad [1]
33+
x_{t+1} = A_{t}x_{t} + c_{t} + R_{t}\epsilon_{t} \quad (1)
3434
$$
3535

3636
$$
37-
y_{t} = Z_{t}x_{t} + d_{t} + \eta_{t} \quad [2]
37+
y_{t} = Z_{t}x_{t} + d_{t} + \eta_{t} \quad (2)
3838
$$
3939

4040
The process/state covariance is given by $\epsilon_{t} \sim N(0, Q_{t})$ where $Q_{t}$ is the process/state innovations and the observation/measurement covariance is given by $\eta_{t} \sim N(0, H_{t})$ where $H_{t}$ describes the uncertainty in the measurement device or measurement procedure.
@@ -69,11 +69,11 @@ The general idea is that we make predictions based on our current state vector a
6969
The following equations define the process:
7070
|Description|Equation|
7171
| --- | --- |
72-
|Predict the next state vector| $\hat{x}_{t+1\|t} = A_{t}\hat{x}_{t\|t} \quad [3]$ |
73-
|Predict the next state/process covariance| $P_{t+1\|t} = A_{t}P_{t+1\|t}A_{t}^{T} + Q \quad [4]$ |
74-
|Compute Kalman Gain | $K_{t} = P_{t\|t-1}Z^{T}(ZP_{t\|t-1}Z^{T} + H_{t})^{-1} \quad [5]$ |
75-
|Estimate current state vector| $\hat{x}_{t\|t} = \hat{x}_{t\|t-1} + K_{t}(y_{t} - Z\hat{x}_{t\|t-1}) \quad [6]$ |
76-
|Estimate current state/process covariance| $P_{t\|t} = (I - K_{t}Z_{t})P_{t\|t-1}(I - K_{t}Z_{t})^{T} + K_{t}H_{t}K_{t}^{T} \quad [7]$ |
72+
|Predict the next state vector| $\hat{x}_{t+1\|t} = A_{t}\hat{x}_{t\|t} \quad (3)$ |
73+
|Predict the next state/process covariance| $P_{t+1\|t} = A_{t}P_{t+1\|t}A_{t}^{T} + Q \quad (4)$ |
74+
|Compute Kalman Gain | $K_{t} = P_{t\|t-1}Z^{T}(ZP_{t\|t-1}Z^{T} + H_{t})^{-1} \quad (5)$ |
75+
|Estimate current state vector| $\hat{x}_{t\|t} = \hat{x}_{t\|t-1} + K_{t}(y_{t} - Z\hat{x}_{t\|t-1}) \quad (6)$ |
76+
|Estimate current state/process covariance| $P_{t\|t} = (I - K_{t}Z_{t})P_{t\|t-1}(I - K_{t}Z_{t})^{T} + K_{t}H_{t}K_{t}^{T} \quad (7)$ |
7777

7878
:::{note}
7979
We wrote the equation for $P_{t\|t}$ above using Joseph form, which is more numerically stable but also wordier. In different texts you may encounter this equation written in "standard" form.

0 commit comments

Comments
 (0)