@@ -930,7 +930,7 @@ fig.show(config={"displayModeBar": False})
930
930
plot_model_evaluations(
931
931
*evaluate_haversine(fiona_df.select("longitude", "latitude").to_numpy(), post_mean.values),
932
932
main_title="Simple"
933
- )
933
+ ).show(width=1000, renderer="svg")
934
934
```
935
935
936
936
# Generate 24-hour forecasts with our simple model
@@ -958,7 +958,7 @@ simple_errors, simple_cum_error, simple_mean_error = evaluate_haversine(
958
958
)
959
959
plot_model_evaluations(
960
960
simple_errors, simple_cum_error, simple_mean_error, main_title="24-hour Simple"
961
- )
961
+ ).show(width=1000, renderer="svg")
962
962
```
963
963
964
964
# Adding Deterministic Covariates/Exogenous Variables
@@ -1293,7 +1293,7 @@ fig.show(config={"displayModeBar": False})
1293
1293
plot_model_evaluations(
1294
1294
*evaluate_haversine(fiona_df.select("longitude", "latitude").to_numpy(), post_mean.values),
1295
1295
main_title="Exogenous"
1296
- )
1296
+ ).show(width=1000, renderer="svg")
1297
1297
```
1298
1298
1299
1299
# Generate 24-hour forecasts with our Exogenous SSM
@@ -1343,7 +1343,9 @@ fig.show(config={"displayModeBar": False})
1343
1343
exog_errors, exog_cum_error, exog_mean_error = evaluate_haversine(
1344
1344
fiona_df.select("longitude", "latitude").to_numpy()[1:], f_mean.values
1345
1345
)
1346
- plot_model_evaluations(exog_errors, exog_cum_error, exog_mean_error, main_title="24-hour Exogenous")
1346
+ plot_model_evaluations(
1347
+ exog_errors, exog_cum_error, exog_mean_error, main_title="24-hour Exogenous"
1348
+ ).show(width=1000, renderer="svg")
1347
1349
```
1348
1350
1349
1351
# Add B-Splines
@@ -1420,7 +1422,7 @@ fig.update_layout(
1420
1422
yaxis=dict(title="Latitude", ticksuffix="°", range=(14, 65)),
1421
1423
title=dict(text="B-Spline Knot Locations"),
1422
1424
)
1423
- fig.show(config={"displayModeBar": False} )
1425
+ fig.show(width=1000, renderer="svg" )
1424
1426
```
1425
1427
1426
1428
Next, we need to create the basis functions over the defined variable space knot locations for each variable.
@@ -1730,7 +1732,7 @@ fig.show(config={"displayModeBar": False})
1730
1732
plot_model_evaluations(
1731
1733
*evaluate_haversine(fiona_df.select("longitude", "latitude").to_numpy(), post_mean.values),
1732
1734
main_title="B-Spline"
1733
- )
1735
+ ).show(width=1000, renderer="svg")
1734
1736
```
1735
1737
1736
1738
Our 24-hour (4-period) forecasts, look pretty good. So far, this follows the true trajectory during the mid-section the best.
@@ -1768,7 +1770,7 @@ spline_errors, spline_cum_error, spline_mean_error = evaluate_haversine(
1768
1770
)
1769
1771
plot_model_evaluations(
1770
1772
spline_errors, spline_cum_error, spline_mean_error, main_title="24-hour B-Spline"
1771
- )
1773
+ ).show(width=1000, renderer="svg")
1772
1774
```
1773
1775
1774
1776
# Closing Remarks
@@ -1807,7 +1809,9 @@ fig.update_layout(
1807
1809
title=f"24-hour Forecast Model Comparisons",
1808
1810
xaxis=dict(title="Time Period"),
1809
1811
yaxis=dict(title="Miles Away from Actual"),
1812
+ width=1000,
1810
1813
)
1814
+ fig.show(renderer="svg")
1811
1815
```
1812
1816
1813
1817
# Authors
0 commit comments