-
-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathtest_distributions_random.py
616 lines (478 loc) · 22.5 KB
/
test_distributions_random.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
from __future__ import division
import pytest
import numpy as np
import numpy.testing as npt
import scipy.stats as st
from scipy import linalg
import numpy.random as nr
import pymc3 as pm
from .helpers import SeededTest
from .test_distributions import (
build_model, Domain, product, R, Rplus, Rplusbig, Rplusdunif,
Unit, Nat, NatSmall, I, Simplex, Vector, PdMatrix,
PdMatrixChol, PdMatrixCholUpper
)
def pymc3_random(dist, paramdomains, ref_rand, valuedomain=Domain([0]),
size=10000, alpha=0.05, fails=10, extra_args=None):
model = build_model(dist, valuedomain, paramdomains, extra_args)
domains = paramdomains.copy()
for pt in product(domains, n_samples=100):
pt = pm.Point(pt, model=model)
p = alpha
# Allow KS test to fail (i.e., the samples be different)
# a certain number of times. Crude, but necessary.
f = fails
while p <= alpha and f > 0:
s0 = model.named_vars['value'].random(size=size, point=pt)
s1 = ref_rand(size=size, **pt)
_, p = st.ks_2samp(np.atleast_1d(s0).flatten(),
np.atleast_1d(s1).flatten())
f -= 1
assert p > alpha, str(pt)
def pymc3_random_discrete(dist, paramdomains,
valuedomain=Domain([0]), ref_rand=None,
size=100000, alpha=0.05, fails=20):
model = build_model(dist, valuedomain, paramdomains)
domains = paramdomains.copy()
for pt in product(domains, n_samples=100):
pt = pm.Point(pt, model=model)
p = alpha
# Allow Chisq test to fail (i.e., the samples be different)
# a certain number of times.
f = fails
while p <= alpha and f > 0:
o = model.named_vars['value'].random(size=size, point=pt)
e = ref_rand(size=size, **pt)
o = np.atleast_1d(o).flatten()
e = np.atleast_1d(e).flatten()
observed = dict(zip(*np.unique(o, return_counts=True)))
expected = dict(zip(*np.unique(e, return_counts=True)))
for e in expected.keys():
expected[e] = (observed.get(e, 0), expected[e])
k = np.array([v for v in expected.values()])
if np.all(k[:, 0] == k[:, 1]):
p = 1.
else:
_, p = st.chisquare(k[:, 0], k[:, 1])
f -= 1
assert p > alpha, str(pt)
class TestDrawValues(SeededTest):
def test_draw_scalar_parameters(self):
with pm.Model():
y = pm.Normal('y1', mu=0., sd=1.)
mu, tau = pm.distributions.draw_values([y.distribution.mu, y.distribution.tau])
npt.assert_almost_equal(mu, 0)
npt.assert_almost_equal(tau, 1)
def test_draw_point_replacement(self):
with pm.Model():
mu = pm.Normal('mu', mu=0., tau=1e-3)
sigma = pm.Gamma('sigma', alpha=1., beta=1., transform=None)
y = pm.Normal('y', mu=mu, sd=sigma)
mu2, tau2 = pm.distributions.draw_values([y.distribution.mu, y.distribution.tau],
point={'mu': 5., 'sigma': 2.})
npt.assert_almost_equal(mu2, 5)
npt.assert_almost_equal(tau2, 1 / 2.**2)
def test_random_sample_returns_nd_array(self):
with pm.Model():
mu = pm.Normal('mu', mu=0., tau=1e-3)
sigma = pm.Gamma('sigma', alpha=1., beta=1., transform=None)
y = pm.Normal('y', mu=mu, sd=sigma)
mu, tau = pm.distributions.draw_values([y.distribution.mu, y.distribution.tau])
assert isinstance(mu, np.ndarray)
assert isinstance(tau, np.ndarray)
class BaseTestCases(object):
class BaseTestCase(SeededTest):
shape = 5
def setup_method(self, *args, **kwargs):
super(BaseTestCases.BaseTestCase, self).setup_method(*args, **kwargs)
self.model = pm.Model()
def get_random_variable(self, shape, with_vector_params=False, name=None):
if with_vector_params:
params = {key: value * np.ones(self.shape, dtype=np.dtype(type(value))) for
key, value in self.params.items()}
else:
params = self.params
if name is None:
name = self.distribution.__name__
with self.model:
if shape is None:
return self.distribution(name, transform=None, **params)
else:
return self.distribution(name, shape=shape, transform=None, **params)
@staticmethod
def sample_random_variable(random_variable, size):
try:
return random_variable.random(size=size)
except AttributeError:
return random_variable.distribution.random(size=size)
def test_scalar_parameter_shape(self):
rv = self.get_random_variable(None)
for size in (None, 5, (4, 5)):
if size is None:
expected = 1,
else:
expected = np.atleast_1d(size).tolist()
actual = np.atleast_1d(self.sample_random_variable(rv, size)).shape
assert tuple(expected) == actual
def test_scalar_shape(self):
shape = 10
rv = self.get_random_variable(shape)
for size in (None, 5, (4, 5)):
if size is None:
expected = []
else:
expected = np.atleast_1d(size).tolist()
expected.append(shape)
actual = np.atleast_1d(self.sample_random_variable(rv, size)).shape
assert tuple(expected) == actual
def test_parameters_1d_shape(self):
rv = self.get_random_variable(self.shape, with_vector_params=True)
for size in (None, 5, (4, 5)):
if size is None:
expected = []
else:
expected = np.atleast_1d(size).tolist()
expected.append(self.shape)
actual = self.sample_random_variable(rv, size).shape
assert tuple(expected) == actual
def test_broadcast_shape(self):
broadcast_shape = (2 * self.shape, self.shape)
rv = self.get_random_variable(broadcast_shape, with_vector_params=True)
for size in (None, 5, (4, 5)):
if size is None:
expected = []
else:
expected = np.atleast_1d(size).tolist()
expected.extend(broadcast_shape)
actual = np.atleast_1d(self.sample_random_variable(rv, size)).shape
assert tuple(expected) == actual
def test_different_shapes_and_sample_sizes(self):
shapes = [(), (1,), (1, 1), (1, 2), (10, 10, 1), (10, 10, 2)]
prefix = self.distribution.__name__
expected = []
actual = []
for shape in shapes:
rv = self.get_random_variable(shape, name='%s_%s' % (prefix, shape))
for size in (None, 1, 5, (4, 5)):
if size is None:
s = []
else:
try:
s = list(size)
except TypeError:
s = [size]
s.extend(shape)
e = tuple(s)
a = self.sample_random_variable(rv, size).shape
expected.append(e)
actual.append(a)
assert expected == actual
class TestNormal(BaseTestCases.BaseTestCase):
distribution = pm.Normal
params = {'mu': 0., 'tau': 1.}
class TestSkewNormal(BaseTestCases.BaseTestCase):
distribution = pm.SkewNormal
params = {'mu': 0., 'sd': 1., 'alpha': 5.}
class TestHalfNormal(BaseTestCases.BaseTestCase):
distribution = pm.HalfNormal
params = {'tau': 1.}
class TestUniform(BaseTestCases.BaseTestCase):
distribution = pm.Uniform
params = {'lower': 0., 'upper': 1.}
class TestTriangular(BaseTestCases.BaseTestCase):
distribution = pm.Triangular
params = {'c': 0.5, 'lower': 0., 'upper': 1.}
class TestWald(BaseTestCases.BaseTestCase):
distribution = pm.Wald
params = {'mu': 1., 'lam': 1., 'alpha': 0.}
class TestBeta(BaseTestCases.BaseTestCase):
distribution = pm.Beta
params = {'alpha': 1., 'beta': 1.}
class TestExponential(BaseTestCases.BaseTestCase):
distribution = pm.Exponential
params = {'lam': 1.}
class TestLaplace(BaseTestCases.BaseTestCase):
distribution = pm.Laplace
params = {'mu': 1., 'b': 1.}
class TestLognormal(BaseTestCases.BaseTestCase):
distribution = pm.Lognormal
params = {'mu': 1., 'tau': 1.}
class TestStudentT(BaseTestCases.BaseTestCase):
distribution = pm.StudentT
params = {'nu': 5., 'mu': 0., 'lam': 1.}
class TestPareto(BaseTestCases.BaseTestCase):
distribution = pm.Pareto
params = {'alpha': 0.5, 'm': 1.}
class TestCauchy(BaseTestCases.BaseTestCase):
distribution = pm.Cauchy
params = {'alpha': 1., 'beta': 1.}
class TestHalfCauchy(BaseTestCases.BaseTestCase):
distribution = pm.HalfCauchy
params = {'beta': 1.}
class TestGamma(BaseTestCases.BaseTestCase):
distribution = pm.Gamma
params = {'alpha': 1., 'beta': 1.}
class TestInverseGamma(BaseTestCases.BaseTestCase):
distribution = pm.InverseGamma
params = {'alpha': 0.5, 'beta': 0.5}
class TestChiSquared(BaseTestCases.BaseTestCase):
distribution = pm.ChiSquared
params = {'nu': 2.}
class TestWeibull(BaseTestCases.BaseTestCase):
distribution = pm.Weibull
params = {'alpha': 1., 'beta': 1.}
class TestExGaussian(BaseTestCases.BaseTestCase):
distribution = pm.ExGaussian
params = {'mu': 0., 'sigma': 1., 'nu': 1.}
class TestVonMises(BaseTestCases.BaseTestCase):
distribution = pm.VonMises
params = {'mu': 0., 'kappa': 1.}
class TestGumbel(BaseTestCases.BaseTestCase):
distribution = pm.Gumbel
params = {'mu': 0., 'beta': 1.}
class TestBinomial(BaseTestCases.BaseTestCase):
distribution = pm.Binomial
params = {'n': 5, 'p': 0.5}
class TestBetaBinomial(BaseTestCases.BaseTestCase):
distribution = pm.BetaBinomial
params = {'n': 5, 'alpha': 1., 'beta': 1.}
class TestBernoulli(BaseTestCases.BaseTestCase):
distribution = pm.Bernoulli
params = {'p': 0.5}
class TestDiscreteWeibull(BaseTestCases.BaseTestCase):
distribution = pm.DiscreteWeibull
params = {'q': 0.25, 'beta': 2.}
class TestPoisson(BaseTestCases.BaseTestCase):
distribution = pm.Poisson
params = {'mu': 1.}
class TestNegativeBinomial(BaseTestCases.BaseTestCase):
distribution = pm.NegativeBinomial
params = {'mu': 1., 'alpha': 1.}
class TestConstant(BaseTestCases.BaseTestCase):
distribution = pm.Constant
params = {'c': 3}
class TestZeroInflatedPoisson(BaseTestCases.BaseTestCase):
distribution = pm.ZeroInflatedPoisson
params = {'theta': 1., 'psi': 0.3}
class TestZeroInflatedNegativeBinomial(BaseTestCases.BaseTestCase):
distribution = pm.ZeroInflatedNegativeBinomial
params = {'mu': 1., 'alpha': 1., 'psi': 0.3}
class TestDiscreteUniform(BaseTestCases.BaseTestCase):
distribution = pm.DiscreteUniform
params = {'lower': 0., 'upper': 10.}
class TestGeometric(BaseTestCases.BaseTestCase):
distribution = pm.Geometric
params = {'p': 0.5}
class TestCategorical(BaseTestCases.BaseTestCase):
distribution = pm.Categorical
params = {'p': np.ones(BaseTestCases.BaseTestCase.shape)}
def get_random_variable(self, shape, with_vector_params=False, **kwargs): # don't transform categories
return super(TestCategorical, self).get_random_variable(shape, with_vector_params=False, **kwargs)
class TestScalarParameterSamples(SeededTest):
def test_bounded(self):
# A bit crude...
BoundedNormal = pm.Bound(pm.Normal, upper=0)
def ref_rand(size, tau):
return -st.halfnorm.rvs(size=size, loc=0, scale=tau ** -0.5)
pymc3_random(BoundedNormal, {'tau': Rplus}, ref_rand=ref_rand)
def test_uniform(self):
def ref_rand(size, lower, upper):
return st.uniform.rvs(size=size, loc=lower, scale=upper - lower)
pymc3_random(pm.Uniform, {'lower': -Rplus, 'upper': Rplus}, ref_rand=ref_rand)
def test_normal(self):
def ref_rand(size, mu, sd):
return st.norm.rvs(size=size, loc=mu, scale=sd)
pymc3_random(pm.Normal, {'mu': R, 'sd': Rplus}, ref_rand=ref_rand)
def test_skew_normal(self):
def ref_rand(size, alpha, mu, sd):
return st.skewnorm.rvs(size=size, a=alpha, loc=mu, scale=sd)
pymc3_random(pm.SkewNormal, {'mu': R, 'sd': Rplus, 'alpha': R}, ref_rand=ref_rand)
def test_half_normal(self):
def ref_rand(size, tau):
return st.halfnorm.rvs(size=size, loc=0, scale=tau ** -0.5)
pymc3_random(pm.HalfNormal, {'tau': Rplus}, ref_rand=ref_rand)
def test_wald(self):
# Cannot do anything too exciting as scipy wald is a
# location-scale model of the *standard* wald with mu=1 and lam=1
def ref_rand(size, mu, lam, alpha):
return st.wald.rvs(size=size, loc=alpha)
pymc3_random(pm.Wald,
{'mu': Domain([1., 1., 1.]), 'lam': Domain(
[1., 1., 1.]), 'alpha': Rplus},
ref_rand=ref_rand)
def test_beta(self):
def ref_rand(size, alpha, beta):
return st.beta.rvs(a=alpha, b=beta, size=size)
pymc3_random(pm.Beta, {'alpha': Rplus, 'beta': Rplus}, ref_rand=ref_rand)
def test_exponential(self):
def ref_rand(size, lam):
return nr.exponential(scale=1. / lam, size=size)
pymc3_random(pm.Exponential, {'lam': Rplus}, ref_rand=ref_rand)
def test_laplace(self):
def ref_rand(size, mu, b):
return st.laplace.rvs(mu, b, size=size)
pymc3_random(pm.Laplace, {'mu': R, 'b': Rplus}, ref_rand=ref_rand)
def test_lognormal(self):
def ref_rand(size, mu, tau):
return np.exp(mu + (tau ** -0.5) * st.norm.rvs(loc=0., scale=1., size=size))
pymc3_random(pm.Lognormal, {'mu': R, 'tau': Rplusbig}, ref_rand=ref_rand)
def test_student_t(self):
def ref_rand(size, nu, mu, lam):
return st.t.rvs(nu, mu, lam**-.5, size=size)
pymc3_random(pm.StudentT, {'nu': Rplus, 'mu': R, 'lam': Rplus}, ref_rand=ref_rand)
def test_cauchy(self):
def ref_rand(size, alpha, beta):
return st.cauchy.rvs(alpha, beta, size=size)
pymc3_random(pm.Cauchy, {'alpha': R, 'beta': Rplusbig}, ref_rand=ref_rand)
def test_half_cauchy(self):
def ref_rand(size, beta):
return st.halfcauchy.rvs(scale=beta, size=size)
pymc3_random(pm.HalfCauchy, {'beta': Rplusbig}, ref_rand=ref_rand)
def test_gamma_alpha_beta(self):
def ref_rand(size, alpha, beta):
return st.gamma.rvs(alpha, scale=1. / beta, size=size)
pymc3_random(pm.Gamma, {'alpha': Rplusbig, 'beta': Rplusbig}, ref_rand=ref_rand)
def test_gamma_mu_sd(self):
def ref_rand(size, mu, sd):
return st.gamma.rvs(mu**2 / sd**2, scale=sd ** 2 / mu, size=size)
pymc3_random(pm.Gamma, {'mu': Rplusbig, 'sd': Rplusbig}, ref_rand=ref_rand)
def test_inverse_gamma(self):
def ref_rand(size, alpha, beta):
return st.invgamma.rvs(a=alpha, scale=beta, size=size)
pymc3_random(pm.InverseGamma, {'alpha': Rplus, 'beta': Rplus}, ref_rand=ref_rand)
def test_pareto(self):
def ref_rand(size, alpha, m):
return st.pareto.rvs(alpha, scale=m, size=size)
pymc3_random(pm.Pareto, {'alpha': Rplusbig, 'm': Rplusbig}, ref_rand=ref_rand)
def test_ex_gaussian(self):
def ref_rand(size, mu, sigma, nu):
return nr.normal(mu, sigma, size=size) + nr.exponential(scale=nu, size=size)
pymc3_random(pm.ExGaussian, {'mu': R, 'sigma': Rplus, 'nu': Rplus}, ref_rand=ref_rand)
def test_vonmises(self):
def ref_rand(size, mu, kappa):
return st.vonmises.rvs(size=size, loc=mu, kappa=kappa)
pymc3_random(pm.VonMises, {'mu': R, 'kappa': Rplus}, ref_rand=ref_rand)
def test_flat(self):
with pm.Model():
f = pm.Flat('f')
with pytest.raises(ValueError):
f.random(1)
def test_binomial(self):
pymc3_random_discrete(pm.Binomial, {'n': Nat, 'p': Unit}, ref_rand=st.binom.rvs)
def test_beta_binomial(self):
pymc3_random_discrete(pm.BetaBinomial, {'n': Nat, 'alpha': Rplus, 'beta': Rplus},
ref_rand=self._beta_bin)
def _beta_bin(self, n, alpha, beta, size=None):
return st.binom.rvs(n, st.beta.rvs(a=alpha, b=beta, size=size))
def test_bernoulli(self):
pymc3_random_discrete(pm.Bernoulli, {'p': Unit},
ref_rand=lambda size, p=None: st.bernoulli.rvs(p, size=size))
def test_poisson(self):
pymc3_random_discrete(pm.Poisson, {'mu': Rplusbig}, size=500, ref_rand=st.poisson.rvs)
def test_negative_binomial(self):
def ref_rand(size, alpha, mu):
return st.nbinom.rvs(alpha, alpha / (mu + alpha), size=size)
pymc3_random_discrete(pm.NegativeBinomial, {'mu': Rplusbig, 'alpha': Rplusbig},
size=100, fails=50, ref_rand=ref_rand)
def test_geometric(self):
pymc3_random_discrete(pm.Geometric, {'p': Unit}, size=500, fails=50, ref_rand=nr.geometric)
def test_discrete_uniform(self):
def ref_rand(size, lower, upper):
return st.randint.rvs(lower, upper, size=size)
pymc3_random_discrete(pm.DiscreteUniform, {'lower': -NatSmall, 'upper': NatSmall},
ref_rand=ref_rand)
def test_discrete_weibull(self):
def ref_rand(size, q, beta):
u = np.random.uniform(size=size)
return np.ceil(np.power(np.log(1 - u) / np.log(q), 1. / beta)) - 1
pymc3_random_discrete(pm.DiscreteWeibull, {'q': Unit, 'beta': Rplusdunif},
ref_rand=ref_rand)
@pytest.mark.parametrize('s', [2, 3, 4])
def test_categorical_random(self, s):
def ref_rand(size, p):
return nr.choice(np.arange(p.shape[0]), p=p, size=size)
pymc3_random_discrete(pm.Categorical, {'p': Simplex(s)}, ref_rand=ref_rand)
def test_constant_dist(self):
def ref_rand(size, c):
return c * np.ones(size, dtype=int)
pymc3_random_discrete(pm.Constant, {'c': I}, ref_rand=ref_rand)
def test_mv_normal(self):
def ref_rand(size, mu, cov):
return st.multivariate_normal.rvs(mean=mu, cov=cov, size=size)
def ref_rand_tau(size, mu, tau):
return ref_rand(size, mu, linalg.inv(tau))
def ref_rand_chol(size, mu, chol):
return ref_rand(size, mu, np.dot(chol, chol.T))
def ref_rand_uchol(size, mu, chol):
return ref_rand(size, mu, np.dot(chol.T, chol))
for n in [2, 3]:
pymc3_random(pm.MvNormal, {'mu': Vector(R, n), 'cov': PdMatrix(n)},
size=100, valuedomain=Vector(R, n), ref_rand=ref_rand)
pymc3_random(pm.MvNormal, {'mu': Vector(R, n), 'tau': PdMatrix(n)},
size=100, valuedomain=Vector(R, n), ref_rand=ref_rand_tau)
pymc3_random(pm.MvNormal, {'mu': Vector(R, n), 'chol': PdMatrixChol(n)},
size=100, valuedomain=Vector(R, n), ref_rand=ref_rand_chol)
pymc3_random(
pm.MvNormal,
{'mu': Vector(R, n), 'chol': PdMatrixCholUpper(n)},
size=100, valuedomain=Vector(R, n), ref_rand=ref_rand_uchol,
extra_args={'lower': False}
)
def test_mv_t(self):
def ref_rand(size, nu, Sigma, mu):
normal = st.multivariate_normal.rvs(cov=Sigma, size=size).T
chi2 = st.chi2.rvs(df=nu, size=size)
return mu + np.sqrt(nu) * (normal / chi2).T
for n in [2, 3]:
pymc3_random(pm.MvStudentT,
{'nu': Domain([5, 10, 25, 50]), 'Sigma': PdMatrix(
n), 'mu': Vector(R, n)},
size=100, valuedomain=Vector(R, n), ref_rand=ref_rand)
def test_dirichlet(self):
def ref_rand(size, a):
return st.dirichlet.rvs(a, size=size)
for n in [2, 3]:
pymc3_random(pm.Dirichlet, {'a': Vector(Rplus, n)},
valuedomain=Simplex(n), size=100, ref_rand=ref_rand)
def test_multinomial(self):
def ref_rand(size, p, n):
return nr.multinomial(pvals=p, n=n, size=size)
for n in [2, 3]:
pymc3_random_discrete(pm.Multinomial, {'p': Simplex(n), 'n': Nat},
valuedomain=Vector(Nat, n), size=100, ref_rand=ref_rand)
def test_gumbel(self):
def ref_rand(size, mu, beta):
return st.gumbel_r.rvs(loc=mu, scale=beta, size=size)
pymc3_random(pm.Gumbel, {'mu': R, 'beta': Rplus}, ref_rand=ref_rand)
def test_interpolated(self):
for mu in R.vals:
for sd in Rplus.vals:
#pylint: disable=cell-var-from-loop
def ref_rand(size):
return st.norm.rvs(loc=mu, scale=sd, size=size)
class TestedInterpolated (pm.Interpolated):
def __init__(self, **kwargs):
x_points = np.linspace(mu - 5 * sd, mu + 5 * sd, 100)
pdf_points = st.norm.pdf(x_points, loc=mu, scale=sd)
super(TestedInterpolated, self).__init__(
x_points=x_points,
pdf_points=pdf_points,
**kwargs
)
pymc3_random(TestedInterpolated, {}, ref_rand=ref_rand)
@pytest.mark.skip('Wishart random sampling not implemented.\n'
'See https://github.com/pymc-devs/pymc3/issues/538')
def test_wishart(self):
# Wishart non current recommended for use:
# https://github.com/pymc-devs/pymc3/issues/538
# for n in [2, 3]:
# pymc3_random_discrete(Wisvaluedomainhart,
# {'n': Domain([2, 3, 4, 2000]) , 'V': PdMatrix(n) },
# valuedomain=PdMatrix(n),
# ref_rand=lambda n=None, V=None, size=None: \
# st.wishart(V, df=n, size=size))
pass
@pytest.mark.skip('LKJ random sampling not implemented yet.')
def test_lkj(self):
# TODO: generate random numbers.
pass