-
-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathdiscrete.py
1630 lines (1359 loc) · 51.8 KB
/
discrete.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2020 The PyMC Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import theano.tensor as tt
from scipy import stats
import warnings
from pymc3.util import get_variable_name
from .dist_math import bound, factln, binomln, betaln, logpow, random_choice
from .distribution import Discrete, draw_values, generate_samples
from .shape_utils import broadcast_distribution_samples
from pymc3.math import tround, sigmoid, logaddexp, logit, log1pexp
from ..theanof import floatX, intX, take_along_axis
__all__ = ['Binomial', 'BetaBinomial', 'Bernoulli', 'DiscreteWeibull',
'Poisson', 'NegativeBinomial', 'ConstantDist', 'Constant',
'ZeroInflatedPoisson', 'ZeroInflatedBinomial', 'ZeroInflatedNegativeBinomial',
'DiscreteUniform', 'Geometric', 'Categorical', 'OrderedLogistic']
class Binomial(Discrete):
R"""
Binomial log-likelihood.
The discrete probability distribution of the number of successes
in a sequence of n independent yes/no experiments, each of which
yields success with probability p.
The pmf of this distribution is
.. math:: f(x \mid n, p) = \binom{n}{x} p^x (1-p)^{n-x}
.. plot::
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
x = np.arange(0, 22)
ns = [10, 17]
ps = [0.5, 0.7]
for n, p in zip(ns, ps):
pmf = st.binom.pmf(x, n, p)
plt.plot(x, pmf, '-o', label='n = {}, p = {}'.format(n, p))
plt.xlabel('x', fontsize=14)
plt.ylabel('f(x)', fontsize=14)
plt.legend(loc=1)
plt.show()
======== ==========================================
Support :math:`x \in \{0, 1, \ldots, n\}`
Mean :math:`n p`
Variance :math:`n p (1 - p)`
======== ==========================================
Parameters
----------
n: int
Number of Bernoulli trials (n >= 0).
p: float
Probability of success in each trial (0 < p < 1).
"""
def __init__(self, n, p, *args, **kwargs):
super().__init__(*args, **kwargs)
self.n = n = tt.as_tensor_variable(intX(n))
self.p = p = tt.as_tensor_variable(floatX(p))
self.mode = tt.cast(tround(n * p), self.dtype)
def random(self, point=None, size=None):
"""
Draw random values from Binomial distribution.
Parameters
----------
point: dict, optional
Dict of variable values on which random values are to be
conditioned (uses default point if not specified).
size: int, optional
Desired size of random sample (returns one sample if not
specified).
Returns
-------
array
"""
n, p = draw_values([self.n, self.p], point=point, size=size)
return generate_samples(stats.binom.rvs, n=n, p=p,
dist_shape=self.shape,
size=size)
def logp(self, value):
"""
Calculate log-probability of Binomial distribution at specified value.
Parameters
----------
value: numeric
Value(s) for which log-probability is calculated. If the log probabilities for multiple
values are desired the values must be provided in a numpy array or theano tensor
Returns
-------
TensorVariable
"""
n = self.n
p = self.p
return bound(
binomln(n, value) + logpow(p, value) + logpow(1 - p, n - value),
0 <= value, value <= n,
0 <= p, p <= 1)
def _repr_latex_(self, name=None, dist=None):
if dist is None:
dist = self
n = dist.n
p = dist.p
name = r'\text{%s}' % name
return r'${} \sim \text{{Binomial}}(\mathit{{n}}={},~\mathit{{p}}={})$'.format(name,
get_variable_name(n),
get_variable_name(p))
class BetaBinomial(Discrete):
R"""
Beta-binomial log-likelihood.
Equivalent to binomial random variable with success probability
drawn from a beta distribution.
The pmf of this distribution is
.. math::
f(x \mid \alpha, \beta, n) =
\binom{n}{x}
\frac{B(x + \alpha, n - x + \beta)}{B(\alpha, \beta)}
.. plot::
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
from scipy import special
plt.style.use('seaborn-darkgrid')
def BetaBinom(a, b, n, x):
pmf = special.binom(n, x) * (special.beta(x+a, n-x+b) / special.beta(a, b))
return pmf
x = np.arange(0, 11)
alphas = [0.5, 1, 2.3]
betas = [0.5, 1, 2]
n = 10
for a, b in zip(alphas, betas):
pmf = BetaBinom(a, b, n, x)
plt.plot(x, pmf, '-o', label=r'$\alpha$ = {}, $\beta$ = {}, n = {}'.format(a, b, n))
plt.xlabel('x', fontsize=12)
plt.ylabel('f(x)', fontsize=12)
plt.ylim(0)
plt.legend(loc=9)
plt.show()
======== =================================================================
Support :math:`x \in \{0, 1, \ldots, n\}`
Mean :math:`n \dfrac{\alpha}{\alpha + \beta}`
Variance :math:`n \dfrac{\alpha \beta}{(\alpha+\beta)^2 (\alpha+\beta+1)}`
======== =================================================================
Parameters
----------
n: int
Number of Bernoulli trials (n >= 0).
alpha: float
alpha > 0.
beta: float
beta > 0.
"""
def __init__(self, alpha, beta, n, *args, **kwargs):
super().__init__(*args, **kwargs)
self.alpha = alpha = tt.as_tensor_variable(floatX(alpha))
self.beta = beta = tt.as_tensor_variable(floatX(beta))
self.n = n = tt.as_tensor_variable(intX(n))
self.mode = tt.cast(tround(alpha / (alpha + beta)), 'int8')
def _random(self, alpha, beta, n, size=None):
size = size or 1
p = stats.beta.rvs(a=alpha, b=beta, size=size).flatten()
# Sometimes scipy.beta returns nan. Ugh.
while np.any(np.isnan(p)):
i = np.isnan(p)
p[i] = stats.beta.rvs(a=alpha, b=beta, size=np.sum(i))
# Sigh...
_n, _p, _size = np.atleast_1d(n).flatten(), p.flatten(), p.shape[0]
quotient, remainder = divmod(_p.shape[0], _n.shape[0])
if remainder != 0:
raise TypeError('n has a bad size! Was cast to {}, must evenly divide {}'.format(
_n.shape[0], _p.shape[0]))
if quotient != 1:
_n = np.tile(_n, quotient)
samples = np.reshape(stats.binom.rvs(n=_n, p=_p, size=_size), size)
return samples
def random(self, point=None, size=None):
"""
Draw random values from BetaBinomial distribution.
Parameters
----------
point: dict, optional
Dict of variable values on which random values are to be
conditioned (uses default point if not specified).
size: int, optional
Desired size of random sample (returns one sample if not
specified).
Returns
-------
array
"""
alpha, beta, n = \
draw_values([self.alpha, self.beta, self.n], point=point, size=size)
return generate_samples(self._random, alpha=alpha, beta=beta, n=n,
dist_shape=self.shape,
size=size)
def logp(self, value):
"""
Calculate log-probability of BetaBinomial distribution at specified value.
Parameters
----------
value: numeric
Value(s) for which log-probability is calculated. If the log probabilities for multiple
values are desired the values must be provided in a numpy array or theano tensor
Returns
-------
TensorVariable
"""
alpha = self.alpha
beta = self.beta
return bound(binomln(self.n, value)
+ betaln(value + alpha, self.n - value + beta)
- betaln(alpha, beta),
value >= 0, value <= self.n,
alpha > 0, beta > 0)
def _repr_latex_(self, name=None, dist=None):
if dist is None:
dist = self
alpha = dist.alpha
beta = dist.beta
name = r'\text{%s}' % name
return r'${} \sim \text{{BetaBinomial}}(\mathit{{alpha}}={},~\mathit{{beta}}={})$'.format(name,
get_variable_name(alpha),
get_variable_name(beta))
class Bernoulli(Discrete):
R"""Bernoulli log-likelihood
The Bernoulli distribution describes the probability of successes
(x=1) and failures (x=0).
The pmf of this distribution is
.. math:: f(x \mid p) = p^{x} (1-p)^{1-x}
.. plot::
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
x = [0, 1]
for p in [0, 0.5, 0.8]:
pmf = st.bernoulli.pmf(x, p)
plt.plot(x, pmf, '-o', label='p = {}'.format(p))
plt.xlabel('x', fontsize=12)
plt.ylabel('f(x)', fontsize=12)
plt.ylim(0)
plt.legend(loc=9)
plt.show()
======== ======================
Support :math:`x \in \{0, 1\}`
Mean :math:`p`
Variance :math:`p (1 - p)`
======== ======================
Parameters
----------
p: float
Probability of success (0 < p < 1).
logit_p: float
Logit of success probability. Only one of `p` and `logit_p`
can be specified.
"""
def __init__(self, p=None, logit_p=None, *args, **kwargs):
super().__init__(*args, **kwargs)
if sum(int(var is None) for var in [p, logit_p]) != 1:
raise ValueError('Specify one of p and logit_p')
if p is not None:
self._is_logit = False
self.p = p = tt.as_tensor_variable(floatX(p))
self._logit_p = logit(p)
else:
self._is_logit = True
self.p = tt.nnet.sigmoid(floatX(logit_p))
self._logit_p = tt.as_tensor_variable(logit_p)
self.mode = tt.cast(tround(self.p), 'int8')
def random(self, point=None, size=None):
"""
Draw random values from Bernoulli distribution.
Parameters
----------
point: dict, optional
Dict of variable values on which random values are to be
conditioned (uses default point if not specified).
size: int, optional
Desired size of random sample (returns one sample if not
specified).
Returns
-------
array
"""
p = draw_values([self.p], point=point, size=size)[0]
return generate_samples(stats.bernoulli.rvs, p,
dist_shape=self.shape,
size=size)
def logp(self, value):
"""
Calculate log-probability of Bernoulli distribution at specified value.
Parameters
----------
value: numeric
Value(s) for which log-probability is calculated. If the log probabilities for multiple
values are desired the values must be provided in a numpy array or theano tensor
Returns
-------
TensorVariable
"""
if self._is_logit:
lp = tt.switch(value, self._logit_p, -self._logit_p)
return -log1pexp(-lp)
else:
p = self.p
return bound(
tt.switch(value, tt.log(p), tt.log(1 - p)),
value >= 0, value <= 1,
p >= 0, p <= 1)
def _repr_latex_(self, name=None, dist=None):
if dist is None:
dist = self
p = dist.p
name = r'\text{%s}' % name
return r'${} \sim \text{{Bernoulli}}(\mathit{{p}}={})$'.format(name,
get_variable_name(p))
class DiscreteWeibull(Discrete):
R"""Discrete Weibull log-likelihood
The discrete Weibull distribution is a flexible model of count data that
can handle both over- and under-dispersion.
The pmf of this distribution is
.. math:: f(x \mid q, \beta) = q^{x^{\beta}} - q^{(x + 1)^{\beta}}
.. plot::
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
from scipy import special
plt.style.use('seaborn-darkgrid')
def DiscreteWeibull(q, b, x):
return q**(x**b) - q**((x + 1)**b)
x = np.arange(0, 10)
qs = [0.1, 0.9, 0.9]
betas = [0.3, 1.3, 3]
for q, b in zip(qs, betas):
pmf = DiscreteWeibull(q, b, x)
plt.plot(x, pmf, '-o', label=r'q = {}, $\beta$ = {}'.format(q, b))
plt.xlabel('x', fontsize=12)
plt.ylabel('f(x)', fontsize=12)
plt.ylim(0)
plt.legend(loc=1)
plt.show()
======== ======================
Support :math:`x \in \mathbb{N}_0`
Mean :math:`\mu = \sum_{x = 1}^{\infty} q^{x^{\beta}}`
Variance :math:`2 \sum_{x = 1}^{\infty} x q^{x^{\beta}} - \mu - \mu^2`
======== ======================
"""
def __init__(self, q, beta, *args, **kwargs):
super().__init__(*args, defaults=('median',), **kwargs)
self.q = q = tt.as_tensor_variable(floatX(q))
self.beta = beta = tt.as_tensor_variable(floatX(beta))
self.median = self._ppf(0.5)
def logp(self, value):
"""
Calculate log-probability of DiscreteWeibull distribution at specified value.
Parameters
----------
value: numeric
Value(s) for which log-probability is calculated. If the log probabilities for multiple
values are desired the values must be provided in a numpy array or theano tensor
Returns
-------
TensorVariable
"""
q = self.q
beta = self.beta
return bound(tt.log(tt.power(q, tt.power(value, beta)) - tt.power(q, tt.power(value + 1, beta))),
0 <= value,
0 < q, q < 1,
0 < beta)
def _ppf(self, p):
"""
The percentile point function (the inverse of the cumulative
distribution function) of the discrete Weibull distribution.
"""
q = self.q
beta = self.beta
return (tt.ceil(tt.power(tt.log(1 - p) / tt.log(q), 1. / beta)) - 1).astype('int64')
def _random(self, q, beta, size=None):
p = np.random.uniform(size=size)
return np.ceil(np.power(np.log(1 - p) / np.log(q), 1. / beta)) - 1
def random(self, point=None, size=None):
"""
Draw random values from DiscreteWeibull distribution.
Parameters
----------
point: dict, optional
Dict of variable values on which random values are to be
conditioned (uses default point if not specified).
size: int, optional
Desired size of random sample (returns one sample if not
specified).
Returns
-------
array
"""
q, beta = draw_values([self.q, self.beta], point=point, size=size)
return generate_samples(self._random, q, beta,
dist_shape=self.shape,
size=size)
def _repr_latex_(self, name=None, dist=None):
if dist is None:
dist = self
q = dist.q
beta = dist.beta
name = r'\text{%s}' % name
return r'${} \sim \text{{DiscreteWeibull}}(\mathit{{q}}={},~\mathit{{beta}}={})$'.format(name,
get_variable_name(q),
get_variable_name(beta))
class Poisson(Discrete):
R"""
Poisson log-likelihood.
Often used to model the number of events occurring in a fixed period
of time when the times at which events occur are independent.
The pmf of this distribution is
.. math:: f(x \mid \mu) = \frac{e^{-\mu}\mu^x}{x!}
.. plot::
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
x = np.arange(0, 15)
for m in [0.5, 3, 8]:
pmf = st.poisson.pmf(x, m)
plt.plot(x, pmf, '-o', label='$\mu$ = {}'.format(m))
plt.xlabel('x', fontsize=12)
plt.ylabel('f(x)', fontsize=12)
plt.ylim(0)
plt.legend(loc=1)
plt.show()
======== ==========================
Support :math:`x \in \mathbb{N}_0`
Mean :math:`\mu`
Variance :math:`\mu`
======== ==========================
Parameters
----------
mu: float
Expected number of occurrences during the given interval
(mu >= 0).
Notes
-----
The Poisson distribution can be derived as a limiting case of the
binomial distribution.
"""
def __init__(self, mu, *args, **kwargs):
super().__init__(*args, **kwargs)
self.mu = mu = tt.as_tensor_variable(floatX(mu))
self.mode = intX(tt.floor(mu))
def random(self, point=None, size=None):
"""
Draw random values from Poisson distribution.
Parameters
----------
point: dict, optional
Dict of variable values on which random values are to be
conditioned (uses default point if not specified).
size: int, optional
Desired size of random sample (returns one sample if not
specified).
Returns
-------
array
"""
mu = draw_values([self.mu], point=point, size=size)[0]
return generate_samples(stats.poisson.rvs, mu,
dist_shape=self.shape,
size=size)
def logp(self, value):
"""
Calculate log-probability of Poisson distribution at specified value.
Parameters
----------
value: numeric
Value(s) for which log-probability is calculated. If the log probabilities for multiple
values are desired the values must be provided in a numpy array or theano tensor
Returns
-------
TensorVariable
"""
mu = self.mu
log_prob = bound(
logpow(mu, value) - factln(value) - mu,
mu >= 0, value >= 0)
# Return zero when mu and value are both zero
return tt.switch(tt.eq(mu, 0) * tt.eq(value, 0),
0, log_prob)
def _repr_latex_(self, name=None, dist=None):
if dist is None:
dist = self
mu = dist.mu
name = r'\text{%s}' % name
return r'${} \sim \text{{Poisson}}(\mathit{{mu}}={})$'.format(name,
get_variable_name(mu))
class NegativeBinomial(Discrete):
R"""
Negative binomial log-likelihood.
The negative binomial distribution describes a Poisson random variable
whose rate parameter is gamma distributed.
The pmf of this distribution is
.. math::
f(x \mid \mu, \alpha) =
\binom{x + \alpha - 1}{x}
(\alpha/(\mu+\alpha))^\alpha (\mu/(\mu+\alpha))^x
.. plot::
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
from scipy import special
plt.style.use('seaborn-darkgrid')
def NegBinom(a, m, x):
pmf = special.binom(x + a - 1, x) * (a / (m + a))**a * (m / (m + a))**x
return pmf
x = np.arange(0, 22)
alphas = [0.9, 2, 4]
mus = [1, 2, 8]
for a, m in zip(alphas, mus):
pmf = NegBinom(a, m, x)
plt.plot(x, pmf, '-o', label=r'$\alpha$ = {}, $\mu$ = {}'.format(a, m))
plt.xlabel('x', fontsize=12)
plt.ylabel('f(x)', fontsize=12)
plt.legend(loc=1)
plt.show()
======== ==========================
Support :math:`x \in \mathbb{N}_0`
Mean :math:`\mu`
======== ==========================
Parameters
----------
mu: float
Poission distribution parameter (mu > 0).
alpha: float
Gamma distribution parameter (alpha > 0).
"""
def __init__(self, mu, alpha, *args, **kwargs):
super().__init__(*args, **kwargs)
self.mu = mu = tt.as_tensor_variable(floatX(mu))
self.alpha = alpha = tt.as_tensor_variable(floatX(alpha))
self.mode = intX(tt.floor(mu))
def random(self, point=None, size=None):
"""
Draw random values from NegativeBinomial distribution.
Parameters
----------
point: dict, optional
Dict of variable values on which random values are to be
conditioned (uses default point if not specified).
size: int, optional
Desired size of random sample (returns one sample if not
specified).
Returns
-------
array
"""
mu, alpha = draw_values([self.mu, self.alpha], point=point, size=size)
g = generate_samples(self._random, mu=mu, alpha=alpha,
dist_shape=self.shape,
size=size)
g[g == 0] = np.finfo(float).eps # Just in case
return np.asarray(stats.poisson.rvs(g)).reshape(g.shape)
def _random(self, mu, alpha, size):
""" Wrapper around stats.gamma.rvs that converts NegativeBinomial's
parametrization to scipy.gamma. All parameter arrays should have
been broadcasted properly by generate_samples at this point and size is
the scipy.rvs representation.
"""
return stats.gamma.rvs(
a=alpha,
scale=mu / alpha,
size=size,
)
def logp(self, value):
"""
Calculate log-probability of NegativeBinomial distribution at specified value.
Parameters
----------
value: numeric
Value(s) for which log-probability is calculated. If the log probabilities for multiple
values are desired the values must be provided in a numpy array or theano tensor
Returns
-------
TensorVariable
"""
mu = self.mu
alpha = self.alpha
negbinom = bound(binomln(value + alpha - 1, value)
+ logpow(mu / (mu + alpha), value)
+ logpow(alpha / (mu + alpha), alpha),
value >= 0, mu > 0, alpha > 0)
# Return Poisson when alpha gets very large.
return tt.switch(tt.gt(alpha, 1e10),
Poisson.dist(self.mu).logp(value),
negbinom)
def _repr_latex_(self, name=None, dist=None):
if dist is None:
dist = self
mu = dist.mu
alpha = dist.alpha
name = r'\text{%s}' % name
return r'${} \sim \text{{NegativeBinomial}}(\mathit{{mu}}={},~\mathit{{alpha}}={})$'.format(name,
get_variable_name(mu),
get_variable_name(alpha))
class Geometric(Discrete):
R"""
Geometric log-likelihood.
The probability that the first success in a sequence of Bernoulli
trials occurs on the x'th trial.
The pmf of this distribution is
.. math:: f(x \mid p) = p(1-p)^{x-1}
.. plot::
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
x = np.arange(1, 11)
for p in [0.1, 0.25, 0.75]:
pmf = st.geom.pmf(x, p)
plt.plot(x, pmf, '-o', label='p = {}'.format(p))
plt.xlabel('x', fontsize=12)
plt.ylabel('f(x)', fontsize=12)
plt.legend(loc=1)
plt.show()
======== =============================
Support :math:`x \in \mathbb{N}_{>0}`
Mean :math:`\dfrac{1}{p}`
Variance :math:`\dfrac{1 - p}{p^2}`
======== =============================
Parameters
----------
p: float
Probability of success on an individual trial (0 < p <= 1).
"""
def __init__(self, p, *args, **kwargs):
super().__init__(*args, **kwargs)
self.p = p = tt.as_tensor_variable(floatX(p))
self.mode = 1
def random(self, point=None, size=None):
"""
Draw random values from Geometric distribution.
Parameters
----------
point: dict, optional
Dict of variable values on which random values are to be
conditioned (uses default point if not specified).
size: int, optional
Desired size of random sample (returns one sample if not
specified).
Returns
-------
array
"""
p = draw_values([self.p], point=point, size=size)[0]
return generate_samples(np.random.geometric, p,
dist_shape=self.shape,
size=size)
def logp(self, value):
"""
Calculate log-probability of Geometric distribution at specified value.
Parameters
----------
value: numeric
Value(s) for which log-probability is calculated. If the log probabilities for multiple
values are desired the values must be provided in a numpy array or theano tensor
Returns
-------
TensorVariable
"""
p = self.p
return bound(tt.log(p) + logpow(1 - p, value - 1),
0 <= p, p <= 1, value >= 1)
def _repr_latex_(self, name=None, dist=None):
if dist is None:
dist = self
p = dist.p
name = r'\text{%s}' % name
return r'${} \sim \text{{Geometric}}(\mathit{{p}}={})$'.format(name,
get_variable_name(p))
class DiscreteUniform(Discrete):
R"""
Discrete uniform distribution.
The pmf of this distribution is
.. math:: f(x \mid lower, upper) = \frac{1}{upper-lower+1}
.. plot::
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
ls = [1, -2]
us = [6, 2]
for l, u in zip(ls, us):
x = np.arange(l, u+1)
pmf = [1.0 / (u - l + 1)] * len(x)
plt.plot(x, pmf, '-o', label='lower = {}, upper = {}'.format(l, u))
plt.xlabel('x', fontsize=12)
plt.ylabel('f(x)', fontsize=12)
plt.ylim(0, 0.4)
plt.legend(loc=1)
plt.show()
======== ===============================================
Support :math:`x \in {lower, lower + 1, \ldots, upper}`
Mean :math:`\dfrac{lower + upper}{2}`
Variance :math:`\dfrac{(upper - lower)^2}{12}`
======== ===============================================
Parameters
----------
lower: int
Lower limit.
upper: int
Upper limit (upper > lower).
"""
def __init__(self, lower, upper, *args, **kwargs):
super().__init__(*args, **kwargs)
self.lower = intX(tt.floor(lower))
self.upper = intX(tt.floor(upper))
self.mode = tt.maximum(
intX(tt.floor((upper + lower) / 2.)), self.lower)
def _random(self, lower, upper, size=None):
# This way seems to be the only to deal with lower and upper
# as array-like.
samples = stats.randint.rvs(lower, upper + 1, size=size)
return samples
def random(self, point=None, size=None):
"""
Draw random values from DiscreteUniform distribution.
Parameters
----------
point: dict, optional
Dict of variable values on which random values are to be
conditioned (uses default point if not specified).
size: int, optional
Desired size of random sample (returns one sample if not
specified).
Returns
-------
array
"""
lower, upper = draw_values([self.lower, self.upper], point=point, size=size)
return generate_samples(self._random,
lower, upper,
dist_shape=self.shape,
size=size)
def logp(self, value):
"""
Calculate log-probability of DiscreteUniform distribution at specified value.
Parameters
----------
value: numeric
Value(s) for which log-probability is calculated. If the log probabilities for multiple
values are desired the values must be provided in a numpy array or theano tensor
Returns
-------
TensorVariable
"""
upper = self.upper
lower = self.lower
return bound(-tt.log(upper - lower + 1),
lower <= value, value <= upper)
def _repr_latex_(self, name=None, dist=None):
if dist is None:
dist = self
lower = dist.lower
upper = dist.upper
name = r'\text{%s}' % name
return r'${} \sim \text{{DiscreteUniform}}(\mathit{{lower}}={},~\mathit{{upper}}={})$'.format(name,
get_variable_name(lower),
get_variable_name(upper))
class Categorical(Discrete):
R"""
Categorical log-likelihood.
The most general discrete distribution. The pmf of this distribution is
.. math:: f(x \mid p) = p_x
.. plot::
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
ps = [[0.1, 0.6, 0.3], [0.3, 0.1, 0.1, 0.5]]
for p in ps:
x = range(len(p))
plt.plot(x, p, '-o', label='p = {}'.format(p))
plt.xlabel('x', fontsize=12)
plt.ylabel('f(x)', fontsize=12)
plt.ylim(0)
plt.legend(loc=1)
plt.show()
======== ===================================
Support :math:`x \in \{0, 1, \ldots, |p|-1\}`
======== ===================================
Parameters
----------
p: array of floats
p > 0 and the elements of p must sum to 1. They will be automatically
rescaled otherwise.
"""
def __init__(self, p, *args, **kwargs):
super().__init__(*args, **kwargs)
try:
self.k = tt.shape(p)[-1].tag.test_value
except AttributeError:
self.k = tt.shape(p)[-1]
p = tt.as_tensor_variable(floatX(p))
# From #2082, it may be dangerous to automatically rescale p at this
# point without checking for positiveness
self.p = p
self.mode = tt.argmax(p, axis=-1)
if self.mode.ndim == 1:
self.mode = tt.squeeze(self.mode)
def random(self, point=None, size=None):
"""
Draw random values from Categorical distribution.
Parameters
----------
point: dict, optional
Dict of variable values on which random values are to be
conditioned (uses default point if not specified).
size: int, optional
Desired size of random sample (returns one sample if not
specified).
Returns
-------
array
"""
p, k = draw_values([self.p, self.k], point=point, size=size)
p = p / np.sum(p, axis=-1, keepdims=True)
return generate_samples(random_choice,
p=p,
broadcast_shape=p.shape[:-1] or (1,),
dist_shape=self.shape,