@@ -51,7 +51,7 @@ def get_city_data():
51
51
return data .merge (unique , "inner" , on = "fips" )
52
52
53
53
54
- @pytest .mark .xfail (reason = "Bernoulli distribution not refactored" )
54
+ @pytest .mark .xfail (reason = "Bernoulli logitp distribution not refactored" )
55
55
class TestARM5_4 (SeededTest ):
56
56
def build_model (self ):
57
57
data = pd .read_csv (
@@ -194,7 +194,7 @@ def build_disaster_model(masked=False):
194
194
195
195
196
196
@pytest .mark .xfail (
197
- reason = "DiscreteUniform hasn't been refactored "
197
+ reason = "_check_start_shape fails with start dictionary "
198
198
# condition=(aesara.config.floatX == "float32"), reason="Fails on float32"
199
199
)
200
200
class TestDisasterModel (SeededTest ):
@@ -204,9 +204,9 @@ def test_disaster_model(self):
204
204
model = build_disaster_model (masked = False )
205
205
with model :
206
206
# Initial values for stochastic nodes
207
- start = {"early_mean" : 2.0 , "late_mean" : 3.0 }
207
+ start = {"early_mean" : 2 , "late_mean" : 3.0 }
208
208
# Use slice sampler for means (other variables auto-selected)
209
- step = pm .Slice ([model . early_mean_log__ , model . late_mean_log__ ])
209
+ step = pm .Slice ([model [ " early_mean_log__" ] , model [ " late_mean_log__" ] ])
210
210
tr = pm .sample (500 , tune = 50 , start = start , step = step , chains = 2 )
211
211
az .summary (tr )
212
212
@@ -217,12 +217,12 @@ def test_disaster_model_missing(self):
217
217
# Initial values for stochastic nodes
218
218
start = {"early_mean" : 2.0 , "late_mean" : 3.0 }
219
219
# Use slice sampler for means (other variables auto-selected)
220
- step = pm .Slice ([model . early_mean_log__ , model . late_mean_log__ ])
220
+ step = pm .Slice ([model [ " early_mean_log__" ] , model [ " late_mean_log__" ] ])
221
221
tr = pm .sample (500 , tune = 50 , start = start , step = step , chains = 2 )
222
222
az .summary (tr )
223
223
224
224
225
- @pytest .mark .xfail (reason = "ZeroInflatedPoisson hasn't been refactored for v4 " )
225
+ @pytest .mark .xfail (reason = "_check_start_shape fails with start dictionary " )
226
226
class TestLatentOccupancy (SeededTest ):
227
227
"""
228
228
From the PyMC example list
@@ -277,14 +277,14 @@ def test_run(self):
277
277
"z" : (self .y > 0 ).astype ("int16" ),
278
278
"theta" : np .array (5 , dtype = "f" ),
279
279
}
280
- step_one = pm .Metropolis ([model . theta_interval__ , model . psi_logodds__ ])
280
+ step_one = pm .Metropolis ([model [ " theta_interval__" ] , model [ " psi_logodds__" ] ])
281
281
step_two = pm .BinaryMetropolis ([model .z ])
282
282
pm .sample (50 , step = [step_one , step_two ], start = start , chains = 1 )
283
283
284
284
285
285
@pytest .mark .xfail (
286
- # condition=(aesara.config.floatX == "float32"),
287
- # reason="Fails on float32 due to starting inf at starting logP",
286
+ condition = (aesara .config .floatX == "float32" ),
287
+ reason = "Fails on float32 due to starting inf at starting logP" ,
288
288
)
289
289
class TestRSV (SeededTest ):
290
290
"""
@@ -314,7 +314,7 @@ def build_model(self):
314
314
# Prior probability
315
315
prev_rsv = pm .Beta ("prev_rsv" , 1 , 5 , shape = 3 )
316
316
# RSV in Amman
317
- y_amman = pm .Binomial ("y_amman" , n_amman , prev_rsv , shape = 3 , testval = 100 )
317
+ y_amman = pm .Binomial ("y_amman" , n_amman , prev_rsv , shape = 3 )
318
318
# Likelihood for number with RSV in hospital (assumes Pr(hosp | RSV) = 1)
319
319
pm .Binomial ("y_hosp" , y_amman , market_share , observed = rsv_cases )
320
320
return model
0 commit comments