File tree 6 files changed +17
-17
lines changed
6 files changed +17
-17
lines changed Original file line number Diff line number Diff line change @@ -6,6 +6,7 @@ Aesara utils
6
6
.. autosummary ::
7
7
:toctree: generated/
8
8
9
+ compile_pymc
9
10
gradient
10
11
hessian
11
12
hessian_diag
Original file line number Diff line number Diff line change 81
81
"SMC_kernel" : ":ref:`SMC Kernel <smc_kernels>`" ,
82
82
"Aesara_Op" : ":class:`Aesara Op <aesara.graph.op.Op>`" ,
83
83
"tensor_like" : ":term:`tensor_like`" ,
84
+ "numpy_Generator" : ":class:`~numpy.random.Generator`" ,
85
+ "Distribution" : ":ref:`Distribution <api_distributions>`" ,
84
86
}
85
87
86
88
# Show the documentation of __init__ and the class docstring
Original file line number Diff line number Diff line change @@ -1653,10 +1653,6 @@ class AsymmetricLaplace(Continuous):
1653
1653
Location parameter.
1654
1654
b : tensor_like of float
1655
1655
Scale parameter (b > 0).
1656
-
1657
- See Also:
1658
- --------
1659
- `Reference <https://en.wikipedia.org/wiki/Asymmetric_Laplace_distribution>`_
1660
1656
"""
1661
1657
rv_op = asymmetriclaplace
1662
1658
Original file line number Diff line number Diff line change @@ -988,11 +988,11 @@ class HyperGeometric(Discrete):
988
988
989
989
Parameters
990
990
----------
991
- N : tensor_like of integer
991
+ N : tensor_like of int
992
992
Total size of the population (N > 0)
993
- k : tensor_like of integer
993
+ k : tensor_like of int
994
994
Number of successful individuals in the population (0 <= k <= N)
995
- n : tensor_like of integer
995
+ n : tensor_like of int
996
996
Number of samples drawn from the population (0 <= n <= N)
997
997
"""
998
998
Original file line number Diff line number Diff line change @@ -217,16 +217,17 @@ def rng_fn(
217
217
218
218
219
219
class GaussianRandomWalk (distribution .Continuous ):
220
- r"""Random Walk with Normal innovations
220
+ r"""Random Walk with Normal innovations.
221
221
222
222
Parameters
223
223
----------
224
- mu : tensor_like of float
225
- innovation drift, defaults to 0.0
226
- sigma : tensor_like of float, optional
227
- sigma > 0, innovation standard deviation, defaults to 1.0
228
- init_dist : unnamed distribution
229
- Univariate distribution of the initial value, created with the `.dist()` API.
224
+ mu : tensor_like of float, default 0
225
+ innovation drift
226
+ sigma : tensor_like of float, default 1
227
+ sigma > 0, innovation standard deviation.
228
+ init_dist : Distribution
229
+ Unnamed univariate distribution of the initial value. Unnamed refers to distributions
230
+ created with the ``.dist()`` API.
230
231
231
232
.. warning:: init will be cloned, rendering them independent of the ones passed as input.
232
233
Original file line number Diff line number Diff line change @@ -2277,14 +2277,14 @@ def draw(
2277
2277
2278
2278
Parameters
2279
2279
----------
2280
- vars : Variable or iterable of Variable
2280
+ vars : TensorVariable or iterable of TensorVariable
2281
2281
A variable or a list of variables for which to draw samples.
2282
2282
draws : int, default 1
2283
2283
Number of samples needed to draw.
2284
- random_seed : int, RandomState or Generator , optional
2284
+ random_seed : int, RandomState or numpy_Generator , optional
2285
2285
Seed for the random number generator.
2286
2286
**kwargs : dict, optional
2287
- Keyword arguments for :func:`pymc.aesara .compile_pymc`.
2287
+ Keyword arguments for :func:`pymc.aesaraf .compile_pymc`.
2288
2288
2289
2289
Returns
2290
2290
-------
You can’t perform that action at this time.
0 commit comments