@@ -645,6 +645,7 @@ class TruncatedNormal(BoundedContinuous):
645
645
646
646
647
647
.. plot::
648
+ :context: close-figs
648
649
649
650
import matplotlib.pyplot as plt
650
651
import numpy as np
@@ -673,13 +674,16 @@ class TruncatedNormal(BoundedContinuous):
673
674
674
675
Parameters
675
676
----------
676
- mu: float
677
+ mu : tensor_like of float, default 0
677
678
Mean.
678
- sigma: float
679
- Standard deviation (sigma > 0).
680
- lower: float (optional)
679
+ sigma : tensor_like of float, optional
680
+ Standard deviation (sigma > 0) (only required if tau is not specified).
681
+ Defaults to 1 if neither sigma nor tau is specified.
682
+ tau : tensor_like of float, optional
683
+ Precision (tau > 0) (only required if sigma is not specified).
684
+ lower : tensor_like of float, default - numpy.inf
681
685
Left bound.
682
- upper: float (optional)
686
+ upper : tensor_like of float, default numpy.inf
683
687
Right bound.
684
688
685
689
Examples
@@ -709,7 +713,6 @@ def dist(
709
713
sd : Optional [DIST_PARAMETER_TYPES ] = None ,
710
714
lower : Optional [DIST_PARAMETER_TYPES ] = None ,
711
715
upper : Optional [DIST_PARAMETER_TYPES ] = None ,
712
- transform : str = "auto" ,
713
716
* args ,
714
717
** kwargs ,
715
718
) -> RandomVariable :
@@ -762,9 +765,9 @@ def logp(
762
765
763
766
Parameters
764
767
----------
765
- value: numeric
768
+ value : tensor_like of float
766
769
Value(s) for which log-probability is calculated. If the log probabilities for multiple
767
- values are desired the values must be provided in a numpy array or Aesara tensor
770
+ values are desired the values must be provided in a numpy array or Aesara tensor.
768
771
769
772
Returns
770
773
-------
0 commit comments