@@ -645,6 +645,7 @@ class TruncatedNormal(BoundedContinuous):
645645
646646
647647    .. plot:: 
648+         :context: close-figs 
648649
649650        import matplotlib.pyplot as plt 
650651        import numpy as np 
@@ -673,13 +674,16 @@ class TruncatedNormal(BoundedContinuous):
673674
674675    Parameters 
675676    ---------- 
676-     mu:  float 
677+     mu : tensor_like of  float, default 0  
677678        Mean. 
678-     sigma: float 
679-         Standard deviation (sigma > 0). 
680-     lower: float (optional) 
679+     sigma : tensor_like of float, optional 
680+         Standard deviation (sigma > 0) (only required if tau is not specified). 
681+         Defaults to 1 if neither sigma nor tau is specified. 
682+     tau : tensor_like of float, optional 
683+         Precision (tau > 0) (only required if sigma is not specified). 
684+     lower : tensor_like of float, default - numpy.inf 
681685        Left bound. 
682-     upper:  float (optional)  
686+     upper : tensor_like of  float, default numpy.inf  
683687        Right bound. 
684688
685689    Examples 
@@ -709,7 +713,6 @@ def dist(
709713        sd : Optional [DIST_PARAMETER_TYPES ] =  None ,
710714        lower : Optional [DIST_PARAMETER_TYPES ] =  None ,
711715        upper : Optional [DIST_PARAMETER_TYPES ] =  None ,
712-         transform : str  =  "auto" ,
713716        * args ,
714717        ** kwargs ,
715718    ) ->  RandomVariable :
@@ -762,9 +765,9 @@ def logp(
762765
763766        Parameters 
764767        ---------- 
765-         value: numeric  
768+         value : tensor_like of float  
766769            Value(s) for which log-probability is calculated. If the log probabilities for multiple 
767-             values are desired the values must be provided in a numpy array or Aesara tensor 
770+             values are desired the values must be provided in a numpy array or Aesara tensor.  
768771
769772        Returns 
770773        ------- 
0 commit comments