@@ -2691,7 +2691,7 @@ def rng_fn(cls, rng, nu, sigma, size=None) -> np.ndarray:
2691
2691
2692
2692
class HalfStudentT (PositiveContinuous ):
2693
2693
r"""
2694
- Half Student's T log-likelihood
2694
+ Half Student's T log-likelihood.
2695
2695
2696
2696
The pdf of this distribution is
2697
2697
@@ -2703,6 +2703,7 @@ class HalfStudentT(PositiveContinuous):
2703
2703
\left(1+\frac{1}{\nu}\frac{x^2}{\sigma^2}\right)^{-\frac{\nu+1}{2}}
2704
2704
2705
2705
.. plot::
2706
+ :context: close-figs
2706
2707
2707
2708
import matplotlib.pyplot as plt
2708
2709
import numpy as np
@@ -2726,14 +2727,14 @@ class HalfStudentT(PositiveContinuous):
2726
2727
2727
2728
Parameters
2728
2729
----------
2729
- nu: float
2730
+ nu : tensor_like of float, default 1
2730
2731
Degrees of freedom, also known as normality parameter (nu > 0).
2731
- sigma: float
2732
+ sigma : tensor_like of float, optional
2732
2733
Scale parameter (sigma > 0). Converges to the standard deviation as nu
2733
- increases. (only required if lam is not specified)
2734
- lam: float
2734
+ increases (only required if lam is not specified). Defaults to 1.
2735
+ lam : tensor_like of float, optional
2735
2736
Scale parameter (lam > 0). Converges to the precision as nu
2736
- increases. (only required if sigma is not specified)
2737
+ increases (only required if sigma is not specified). Defaults to 1.
2737
2738
2738
2739
Examples
2739
2740
--------
@@ -2776,9 +2777,9 @@ def logp(value, nu, sigma):
2776
2777
2777
2778
Parameters
2778
2779
----------
2779
- value: numeric
2780
+ value : tensor_like of float
2780
2781
Value(s) for which log-probability is calculated. If the log probabilities for multiple
2781
- values are desired the values must be provided in a numpy array or Aesara tensor
2782
+ values are desired the values must be provided in a numpy array or Aesara tensor.
2782
2783
2783
2784
Returns
2784
2785
-------
0 commit comments