@@ -151,8 +151,8 @@ def __init__(self, distribution, lower, upper,
151
151
default = None
152
152
153
153
super ().__init__ (
154
- distribution = distribution , lower = lower , upper = upper ,
155
- transform = transform , default = default , * args , ** kwargs )
154
+ distribution , lower , upper ,
155
+ default , * args , transform = transform , ** kwargs )
156
156
157
157
158
158
class Bound :
@@ -214,12 +214,13 @@ def __call__(self, name, *args, **kwargs):
214
214
'with the cumulative probability function. See '
215
215
'pymc3/examples/censored_data.py for an example.' )
216
216
217
+ transform = kwargs .pop ('transform' , 'infer' )
217
218
if issubclass (self .distribution , Continuous ):
218
- return _ContinuousBounded (name , self .distribution ,
219
- self .lower , self . upper , * args , ** kwargs )
219
+ return _ContinuousBounded (name , self .distribution , self . lower ,
220
+ self .upper , transform , * args , ** kwargs )
220
221
elif issubclass (self .distribution , Discrete ):
221
- return _DiscreteBounded (name , self .distribution ,
222
- self .lower , self . upper , * args , ** kwargs )
222
+ return _DiscreteBounded (name , self .distribution , self . lower ,
223
+ self .upper , transform , * args , ** kwargs )
223
224
else :
224
225
raise ValueError (
225
226
'Distribution is neither continuous nor discrete.' )
0 commit comments