|
50 | 50 | CompoundStep,
|
51 | 51 | DEMetropolis,
|
52 | 52 | DEMetropolisZ,
|
53 |
| - EllipticalSlice, |
54 | 53 | HamiltonianMC,
|
55 | 54 | Metropolis,
|
56 | 55 | MultivariateNormalProposal,
|
|
62 | 61 | from pymc.step_methods.mlda import extract_Q_estimate
|
63 | 62 | from pymc.tests.checks import close_to
|
64 | 63 | from pymc.tests.models import (
|
65 |
| - mv_prior_simple, |
66 | 64 | mv_simple,
|
67 | 65 | mv_simple_coarse,
|
68 | 66 | mv_simple_discrete,
|
@@ -154,19 +152,6 @@ def test_step_categorical(self):
|
154 | 152 | idata = sample(8000, tune=0, step=step, start=start, model=model, random_seed=1)
|
155 | 153 | self.check_stat(check, idata, step.__class__.__name__)
|
156 | 154 |
|
157 |
| - @pytest.mark.xfail(reason="EllipticalSlice not refactored for v4") |
158 |
| - def test_step_elliptical_slice(self): |
159 |
| - start, model, (K, L, mu, std, noise) = mv_prior_simple() |
160 |
| - unc = noise**0.5 |
161 |
| - check = (("x", np.mean, mu, unc / 10.0), ("x", np.std, std, unc / 10.0)) |
162 |
| - with model: |
163 |
| - steps = (EllipticalSlice(prior_cov=K), EllipticalSlice(prior_chol=L)) |
164 |
| - for step in steps: |
165 |
| - idata = sample( |
166 |
| - 5000, tune=0, step=step, start=start, model=model, random_seed=1, chains=1 |
167 |
| - ) |
168 |
| - self.check_stat(check, idata, step.__class__.__name__) |
169 |
| - |
170 | 155 |
|
171 | 156 | class TestMetropolisProposal:
|
172 | 157 | def test_proposal_choice(self):
|
@@ -1311,7 +1296,6 @@ class TestRVsAssignmentSteps:
|
1311 | 1296 | (HamiltonianMC, {}),
|
1312 | 1297 | (Metropolis, {}),
|
1313 | 1298 | (Slice, {}),
|
1314 |
| - (EllipticalSlice, {"prior_cov": np.eye(1)}), |
1315 | 1299 | (DEMetropolis, {}),
|
1316 | 1300 | (DEMetropolisZ, {}),
|
1317 | 1301 | # (MLDA, {}), # TODO
|
|
0 commit comments