@@ -191,7 +191,7 @@ def product(domains, n_samples=-1):
191
191
names , domains = zip (* domains .items ())
192
192
except ValueError : # domains.items() is empty
193
193
return [{}]
194
- all_vals = [zip (names , val ) for val in itertools .product (* [ d .vals for d in domains ] )]
194
+ all_vals = [zip (names , val ) for val in itertools .product (* ( d .vals for d in domains ) )]
195
195
if n_samples > 0 and len (all_vals ) > n_samples :
196
196
return (all_vals [j ] for j in nr .choice (len (all_vals ), n_samples , replace = False ))
197
197
return all_vals
@@ -294,7 +294,7 @@ def multinomial_logpdf(value, n, p):
294
294
295
295
296
296
def dirichlet_multinomial_logpmf (value , n , a ):
297
- value , n , a = [ np .asarray (x ) for x in [value , n , a ]]
297
+ value , n , a = ( np .asarray (x ) for x in [value , n , a ])
298
298
assert value .ndim == 1
299
299
assert n .ndim == 0
300
300
assert a .shape == value .shape
@@ -318,7 +318,7 @@ def beta_mu_sigma(value, mu, sigma):
318
318
319
319
class ProductDomain :
320
320
def __init__ (self , domains ):
321
- self .vals = list (itertools .product (* [ d .vals for d in domains ] ))
321
+ self .vals = list (itertools .product (* ( d .vals for d in domains ) ))
322
322
self .shape = (len (domains ),) + domains [0 ].shape
323
323
self .lower = [d .lower for d in domains ]
324
324
self .upper = [d .upper for d in domains ]
@@ -2187,7 +2187,7 @@ def test_multinomial_vec(self):
2187
2187
)
2188
2188
2189
2189
assert_almost_equal (
2190
- sum ([ model_single .fastlogp ({"m" : val }) for val in vals ] ),
2190
+ sum (model_single .fastlogp ({"m" : val }) for val in vals ),
2191
2191
model_many .fastlogp ({"m" : vals }),
2192
2192
decimal = 4 ,
2193
2193
)
@@ -2201,7 +2201,7 @@ def test_multinomial_vec_1d_n(self):
2201
2201
Multinomial ("m" , n = ns , p = p )
2202
2202
2203
2203
assert_almost_equal (
2204
- sum ([ multinomial_logpdf (val , n , p ) for val , n in zip (vals , ns )] ),
2204
+ sum (multinomial_logpdf (val , n , p ) for val , n in zip (vals , ns )),
2205
2205
model .fastlogp ({"m" : vals }),
2206
2206
decimal = 4 ,
2207
2207
)
@@ -2215,7 +2215,7 @@ def test_multinomial_vec_1d_n_2d_p(self):
2215
2215
Multinomial ("m" , n = ns , p = ps )
2216
2216
2217
2217
assert_almost_equal (
2218
- sum ([ multinomial_logpdf (val , n , p ) for val , n , p in zip (vals , ns , ps )] ),
2218
+ sum (multinomial_logpdf (val , n , p ) for val , n , p in zip (vals , ns , ps )),
2219
2219
model .fastlogp ({"m" : vals }),
2220
2220
decimal = 4 ,
2221
2221
)
@@ -2229,7 +2229,7 @@ def test_multinomial_vec_2d_p(self):
2229
2229
Multinomial ("m" , n = n , p = ps )
2230
2230
2231
2231
assert_almost_equal (
2232
- sum ([ multinomial_logpdf (val , n , p ) for val , p in zip (vals , ps )] ),
2232
+ sum (multinomial_logpdf (val , n , p ) for val , p in zip (vals , ps )),
2233
2233
model .fastlogp ({"m" : vals }),
2234
2234
decimal = 4 ,
2235
2235
)
@@ -2309,7 +2309,7 @@ def test_dirichlet_multinomial_vec(self):
2309
2309
)
2310
2310
2311
2311
assert_almost_equal (
2312
- sum ([ model_single .fastlogp ({"m" : val }) for val in vals ] ),
2312
+ sum (model_single .fastlogp ({"m" : val }) for val in vals ),
2313
2313
model_many .fastlogp ({"m" : vals }),
2314
2314
decimal = 4 ,
2315
2315
)
@@ -2324,7 +2324,7 @@ def test_dirichlet_multinomial_vec_1d_n(self):
2324
2324
DirichletMultinomial ("m" , n = ns , a = a , size = vals .shape )
2325
2325
2326
2326
assert_almost_equal (
2327
- sum ([ dirichlet_multinomial_logpmf (val , n , a ) for val , n in zip (vals , ns )] ),
2327
+ sum (dirichlet_multinomial_logpmf (val , n , a ) for val , n in zip (vals , ns )),
2328
2328
model .fastlogp ({"m" : vals }),
2329
2329
decimal = 4 ,
2330
2330
)
@@ -2339,7 +2339,7 @@ def test_dirichlet_multinomial_vec_1d_n_2d_a(self):
2339
2339
DirichletMultinomial ("m" , n = ns , a = as_ , size = vals .shape )
2340
2340
2341
2341
assert_almost_equal (
2342
- sum ([ dirichlet_multinomial_logpmf (val , n , a ) for val , n , a in zip (vals , ns , as_ )] ),
2342
+ sum (dirichlet_multinomial_logpmf (val , n , a ) for val , n , a in zip (vals , ns , as_ )),
2343
2343
model .fastlogp ({"m" : vals }),
2344
2344
decimal = 4 ,
2345
2345
)
@@ -2354,7 +2354,7 @@ def test_dirichlet_multinomial_vec_2d_a(self):
2354
2354
DirichletMultinomial ("m" , n = n , a = as_ , size = vals .shape )
2355
2355
2356
2356
assert_almost_equal (
2357
- sum ([ dirichlet_multinomial_logpmf (val , n , a ) for val , a in zip (vals , as_ )] ),
2357
+ sum (dirichlet_multinomial_logpmf (val , n , a ) for val , a in zip (vals , as_ )),
2358
2358
model .fastlogp ({"m" : vals }),
2359
2359
decimal = 4 ,
2360
2360
)
0 commit comments