|
| 1 | +from collections.abc import Callable |
| 2 | +from typing import Literal |
| 3 | + |
| 4 | +from pytensor.scan import scan |
| 5 | +from pytensor.tensor import TensorLike |
| 6 | +from pytensor.tensor.basic import ( |
| 7 | + TensorVariable, |
| 8 | + arange, |
| 9 | + as_tensor, |
| 10 | + moveaxis, |
| 11 | + switch, |
| 12 | + zeros, |
| 13 | +) |
| 14 | +from pytensor.tensor.extra_ops import broadcast_to, linspace |
| 15 | +from pytensor.tensor.math import divmod as pt_divmod |
| 16 | +from pytensor.tensor.math import eq, mean, minimum |
| 17 | +from pytensor.tensor.math import max as pt_max |
| 18 | +from pytensor.tensor.math import min as pt_min |
| 19 | +from pytensor.tensor.shape import specify_broadcastable |
| 20 | +from pytensor.tensor.subtensor import set_subtensor |
| 21 | + |
| 22 | + |
| 23 | +PadMode = Literal[ |
| 24 | + "constant", |
| 25 | + "edge", |
| 26 | + "linear_ramp", |
| 27 | + "maximum", |
| 28 | + "minimum", |
| 29 | + "mean", |
| 30 | + "median", |
| 31 | + "wrap", |
| 32 | + "symmetric", |
| 33 | + "reflect", |
| 34 | +] |
| 35 | +stat_funcs = {"maximum": pt_max, "minimum": pt_min, "mean": mean} |
| 36 | + |
| 37 | + |
| 38 | +def _slice_at_axis(sl: slice, axis: int) -> tuple[slice, ...]: |
| 39 | + """ |
| 40 | + Construct tuple of slices to slice an array in the given dimension. |
| 41 | +
|
| 42 | + Copied from numpy.lib.arraypad._slice_at_axis |
| 43 | + https://github.com/numpy/numpy/blob/300096d384046eee479b0c7a70f79e308da52bff/numpy/lib/_arraypad_impl.py#L33 |
| 44 | +
|
| 45 | + Parameters |
| 46 | + ---------- |
| 47 | + sl : slice |
| 48 | + The slice for the given dimension. |
| 49 | + axis : int |
| 50 | + The axis to which `sl` is applied. All other dimensions are left |
| 51 | + "unsliced". |
| 52 | +
|
| 53 | + Returns |
| 54 | + ------- |
| 55 | + sl : tuple of slices |
| 56 | + A tuple with slices matching `shape` in length. |
| 57 | +
|
| 58 | + Examples |
| 59 | + -------- |
| 60 | + >>> _slice_at_axis(slice(None, 3, -1), 1) |
| 61 | + (slice(None, None, None), slice(None, 3, -1), (...,)) |
| 62 | + """ |
| 63 | + return (slice(None),) * axis + (sl,) + (...,) # type: ignore |
| 64 | + |
| 65 | + |
| 66 | +def _get_edges( |
| 67 | + padded: TensorVariable, axis: int, width_pair: tuple[TensorVariable, TensorVariable] |
| 68 | +) -> tuple[TensorVariable, TensorVariable]: |
| 69 | + """ |
| 70 | + Retrieve edge values from empty-padded array in given dimension. |
| 71 | +
|
| 72 | + Copied from numpy.lib.arraypad._get_edges |
| 73 | + https://github.com/numpy/numpy/blob/300096d384046eee479b0c7a70f79e308da52bff/numpy/lib/_arraypad_impl.py#L154 |
| 74 | +
|
| 75 | + Parameters |
| 76 | + ---------- |
| 77 | + padded : TensorVariable |
| 78 | + Empty-padded array. |
| 79 | + axis : int |
| 80 | + Dimension in which the edges are considered. |
| 81 | + width_pair : (TensorVariable, TensorVariable) |
| 82 | + Pair of widths that mark the pad area on both sides in the given |
| 83 | + dimension. |
| 84 | +
|
| 85 | + Returns |
| 86 | + ------- |
| 87 | + left_edge, right_edge : TensorVariable |
| 88 | + Edge values of the valid area in `padded` in the given dimension. Its |
| 89 | + shape will always match `padded` except for the dimension given by |
| 90 | + `axis` which will have a length of 1. |
| 91 | + """ |
| 92 | + left_index = width_pair[0] |
| 93 | + left_slice = _slice_at_axis(slice(left_index, left_index + 1), axis) |
| 94 | + left_edge = padded[left_slice] |
| 95 | + |
| 96 | + right_index = padded.shape[axis] - width_pair[1] |
| 97 | + right_slice = _slice_at_axis(slice(right_index - 1, right_index), axis) |
| 98 | + right_edge = padded[right_slice] |
| 99 | + |
| 100 | + return left_edge, right_edge |
| 101 | + |
| 102 | + |
| 103 | +def _symbolic_pad( |
| 104 | + x: TensorVariable, pad_width: TensorVariable |
| 105 | +) -> tuple[TensorVariable, tuple[slice, ...], TensorVariable]: |
| 106 | + pad_width = broadcast_to(pad_width, as_tensor((x.ndim, 2))) |
| 107 | + new_shape = as_tensor( |
| 108 | + [pad_width[i][0] + size + pad_width[i][1] for i, size in enumerate(x.shape)] |
| 109 | + ) |
| 110 | + original_area_slice = tuple( |
| 111 | + slice(pad_width[i][0], pad_width[i][0] + size) for i, size in enumerate(x.shape) |
| 112 | + ) |
| 113 | + padded: TensorVariable = set_subtensor(zeros(new_shape)[original_area_slice], x) |
| 114 | + return padded, original_area_slice, pad_width |
| 115 | + |
| 116 | + |
| 117 | +def _get_padding_slices( |
| 118 | + dim_shape: TensorVariable, |
| 119 | + width_pair: tuple[TensorVariable, TensorVariable], |
| 120 | + axis: int, |
| 121 | +) -> tuple[tuple[slice, ...], tuple[slice, ...]]: |
| 122 | + left_slice = _slice_at_axis(slice(None, width_pair[0]), axis) |
| 123 | + right_slice = _slice_at_axis(slice(dim_shape - width_pair[1], None), axis) |
| 124 | + |
| 125 | + return left_slice, right_slice |
| 126 | + |
| 127 | + |
| 128 | +def _constant_pad( |
| 129 | + x: TensorVariable, pad_width: TensorVariable, constant_values: TensorVariable |
| 130 | +) -> TensorVariable: |
| 131 | + padded, area_slice, pad_width = _symbolic_pad(x, pad_width) |
| 132 | + values = broadcast_to(constant_values, as_tensor((padded.ndim, 2))) |
| 133 | + |
| 134 | + for axis in range(padded.ndim): |
| 135 | + width_pair = pad_width[axis] |
| 136 | + value_pair = values[axis] |
| 137 | + dim_shape = padded.shape[axis] |
| 138 | + |
| 139 | + left_slice, right_slice = _get_padding_slices(dim_shape, width_pair, axis) |
| 140 | + padded = set_subtensor(padded[left_slice], value_pair[0]) |
| 141 | + padded = set_subtensor(padded[right_slice], value_pair[1]) |
| 142 | + |
| 143 | + return padded |
| 144 | + |
| 145 | + |
| 146 | +def _edge_pad(x: TensorVariable, pad_width: TensorVariable) -> TensorVariable: |
| 147 | + padded, area_slice, pad_width = _symbolic_pad(x, pad_width) |
| 148 | + for axis in range(padded.ndim): |
| 149 | + width_pair = pad_width[axis] |
| 150 | + dim_shape = padded.shape[axis] |
| 151 | + |
| 152 | + left_edge, right_edge = _get_edges(padded, axis, width_pair) |
| 153 | + left_slice, right_slice = _get_padding_slices(dim_shape, width_pair, axis) |
| 154 | + |
| 155 | + padded = set_subtensor(padded[left_slice], left_edge) |
| 156 | + padded = set_subtensor(padded[right_slice], right_edge) |
| 157 | + |
| 158 | + return padded |
| 159 | + |
| 160 | + |
| 161 | +def _get_stats( |
| 162 | + padded: TensorVariable, |
| 163 | + axis: int, |
| 164 | + width_pair: TensorVariable, |
| 165 | + length_pair: tuple[TensorVariable, TensorVariable] | tuple[None, None], |
| 166 | + stat_func: Callable, |
| 167 | +): |
| 168 | + """ |
| 169 | + Calculate statistic for the empty-padded array in given dimension. |
| 170 | +
|
| 171 | + Copied from numpy.lib.arraypad._get_stats |
| 172 | + https://github.com/numpy/numpy/blob/300096d384046eee479b0c7a70f79e308da52bff/numpy/lib/_arraypad_impl.py#L230 |
| 173 | +
|
| 174 | + Parameters |
| 175 | + ---------- |
| 176 | + padded : TensorVariable |
| 177 | + Empty-padded array. |
| 178 | + axis : int |
| 179 | + Dimension in which the statistic is calculated. |
| 180 | + width_pair : (TensorVariable, TensorVariable) |
| 181 | + Pair of widths that mark the pad area on both sides in the given dimension. |
| 182 | + length_pair : 2-element sequence of None or TensorVariable |
| 183 | + Gives the number of values in valid area from each side that is taken into account when calculating the |
| 184 | + statistic. If None the entire valid area in `padded` is considered. |
| 185 | + stat_func : function |
| 186 | + Function to compute statistic. The expected signature is |
| 187 | + ``stat_func(x: TensorVariable, axis: int, keepdims: bool) -> TensorVariable``. |
| 188 | +
|
| 189 | + Returns |
| 190 | + ------- |
| 191 | + left_stat, right_stat : TensorVariable |
| 192 | + Calculated statistic for both sides of `padded`. |
| 193 | + """ |
| 194 | + # Calculate indices of the edges of the area with original values |
| 195 | + left_index = width_pair[0] |
| 196 | + right_index = padded.shape[axis] - width_pair[1] |
| 197 | + # as well as its length |
| 198 | + max_length = right_index - left_index |
| 199 | + |
| 200 | + # Limit stat_lengths to max_length |
| 201 | + left_length, right_length = length_pair |
| 202 | + |
| 203 | + # Calculate statistic for the left side |
| 204 | + left_length = ( |
| 205 | + minimum(left_length, max_length) if left_length is not None else max_length |
| 206 | + ) |
| 207 | + left_slice = _slice_at_axis(slice(left_index, left_index + left_length), axis) |
| 208 | + left_chunk = padded[left_slice] |
| 209 | + left_stat = stat_func(left_chunk, axis=axis, keepdims=True) |
| 210 | + if left_length is None and right_length is None: |
| 211 | + # We could also return early in the more general case of left_length == right_length, but we don't necessarily |
| 212 | + # know these shapes. |
| 213 | + # TODO: Add rewrite to simplify in this case |
| 214 | + return left_stat, left_stat |
| 215 | + |
| 216 | + # Calculate statistic for the right side |
| 217 | + right_length = ( |
| 218 | + minimum(right_length, max_length) if right_length is not None else max_length |
| 219 | + ) |
| 220 | + right_slice = _slice_at_axis(slice(right_index - right_length, right_index), axis) |
| 221 | + right_chunk = padded[right_slice] |
| 222 | + right_stat = stat_func(right_chunk, axis=axis, keepdims=True) |
| 223 | + |
| 224 | + return left_stat, right_stat |
| 225 | + |
| 226 | + |
| 227 | +def _stat_pad( |
| 228 | + x: TensorVariable, pad_width: TensorVariable, stat_func, stat_length=None |
| 229 | +): |
| 230 | + padded, area_slice, pad_width = _symbolic_pad(x, pad_width) |
| 231 | + if stat_length is None: |
| 232 | + stat_length = [[None, None]] * padded.ndim |
| 233 | + else: |
| 234 | + stat_length = broadcast_to(stat_length, as_tensor((padded.ndim, 2))) |
| 235 | + |
| 236 | + for axis in range(padded.ndim): |
| 237 | + width_pair = pad_width[axis] |
| 238 | + length_pair = stat_length[axis] |
| 239 | + dim_shape = padded.shape[axis] |
| 240 | + |
| 241 | + left_stat, right_stat = _get_stats( |
| 242 | + padded, axis, width_pair, length_pair, stat_func |
| 243 | + ) |
| 244 | + left_slice, right_slice = _get_padding_slices(dim_shape, width_pair, axis) |
| 245 | + padded = set_subtensor(padded[left_slice], left_stat) |
| 246 | + padded = set_subtensor(padded[right_slice], right_stat) |
| 247 | + |
| 248 | + return padded |
| 249 | + |
| 250 | + |
| 251 | +def _linear_ramp_pad( |
| 252 | + x: TensorVariable, pad_width: TensorVariable, end_values: TensorVariable | int = 0 |
| 253 | +) -> TensorVariable: |
| 254 | + padded, area_slice, pad_width = _symbolic_pad(x, pad_width) |
| 255 | + end_values = as_tensor(end_values) |
| 256 | + end_values = broadcast_to(end_values, as_tensor((padded.ndim, 2))) |
| 257 | + |
| 258 | + for axis in range(padded.ndim): |
| 259 | + width_pair = pad_width[axis] |
| 260 | + end_value_pair = end_values[axis] |
| 261 | + edge_pair = _get_edges(padded, axis, width_pair) |
| 262 | + dim_shape = padded.shape[axis] |
| 263 | + left_slice, right_slice = _get_padding_slices(dim_shape, width_pair, axis) |
| 264 | + |
| 265 | + left_ramp, right_ramp = ( |
| 266 | + linspace( |
| 267 | + start=end_value, |
| 268 | + stop=specify_broadcastable(edge, axis).squeeze(axis), |
| 269 | + num=width, |
| 270 | + endpoint=False, |
| 271 | + dtype=padded.dtype, |
| 272 | + axis=axis, |
| 273 | + ) |
| 274 | + for end_value, edge, width in zip(end_value_pair, edge_pair, width_pair) |
| 275 | + ) |
| 276 | + |
| 277 | + # Reverse the direction of the ramp for the "right" side |
| 278 | + right_ramp = right_ramp[_slice_at_axis(slice(None, None, -1), axis)] # type: ignore |
| 279 | + |
| 280 | + padded = set_subtensor(padded[left_slice], left_ramp) |
| 281 | + padded = set_subtensor(padded[right_slice], right_ramp) |
| 282 | + |
| 283 | + return padded |
| 284 | + |
| 285 | + |
| 286 | +def flip(x, axis=None): |
| 287 | + if axis is None: |
| 288 | + index = ((slice(None, None, -1)),) * x.ndim |
| 289 | + else: |
| 290 | + if isinstance(axis, int): |
| 291 | + axis = [axis] |
| 292 | + index = [ |
| 293 | + slice(None, None, -1) if i in axis else slice(None, None, None) |
| 294 | + for i in range(x.ndim) |
| 295 | + ] |
| 296 | + return x[index] |
| 297 | + |
| 298 | + |
| 299 | +def _looping_pad( |
| 300 | + x: TensorVariable, pad_width: TensorVariable, kind: str |
| 301 | +) -> TensorVariable: |
| 302 | + pad_width = broadcast_to(pad_width, as_tensor((x.ndim, 2))) |
| 303 | + |
| 304 | + for axis in range(x.ndim): |
| 305 | + if kind == "wrap": |
| 306 | + |
| 307 | + def inner_func(i, x): |
| 308 | + return x |
| 309 | + |
| 310 | + elif kind == "symmetric": |
| 311 | + # Delay creation of this function to here because we want to use the axis global inside the scan |
| 312 | + def inner_func(i, x): |
| 313 | + return switch(eq(i % 2, 0), flip(x, axis=axis), x) |
| 314 | + |
| 315 | + size = x.shape[axis] |
| 316 | + repeats, (left_remainder, right_remainder) = pt_divmod(pad_width[axis], size) |
| 317 | + |
| 318 | + left_trim = size - left_remainder |
| 319 | + right_trim = size - right_remainder |
| 320 | + total_repeats = repeats.sum() + 3 # left, right, center |
| 321 | + |
| 322 | + parts, _ = scan(inner_func, non_sequences=[x], sequences=arange(total_repeats)) |
| 323 | + |
| 324 | + parts = moveaxis(parts, 0, axis) |
| 325 | + new_shape = [-1 if i == axis else x.shape[i] for i in range(x.ndim)] |
| 326 | + x = parts.reshape(new_shape) |
| 327 | + trim_slice = _slice_at_axis(slice(left_trim, -right_trim), axis) |
| 328 | + x = x[trim_slice] |
| 329 | + |
| 330 | + return x |
| 331 | + |
| 332 | + |
| 333 | +def pad(x: TensorLike, pad_width: TensorLike, mode: PadMode = "constant", **kwargs): |
| 334 | + allowed_kwargs = { |
| 335 | + "edge": [], |
| 336 | + "wrap": [], |
| 337 | + "constant": ["constant_values"], |
| 338 | + "linear_ramp": ["end_values"], |
| 339 | + "maximum": ["stat_length"], |
| 340 | + "mean": ["stat_length"], |
| 341 | + "median": ["stat_length"], |
| 342 | + "minimum": ["stat_length"], |
| 343 | + "reflect": ["reflect_type"], |
| 344 | + "symmetric": ["reflect_type"], |
| 345 | + } |
| 346 | + |
| 347 | + if any(value not in allowed_kwargs[mode] for value in kwargs.keys()): |
| 348 | + raise ValueError( |
| 349 | + f"Invalid keyword arguments for mode '{mode}': {kwargs.keys()}" |
| 350 | + ) |
| 351 | + x = as_tensor(x) |
| 352 | + pad_width = as_tensor(pad_width) |
| 353 | + |
| 354 | + if mode == "constant": |
| 355 | + constant_values = as_tensor(kwargs.pop("constant_values", 0)) |
| 356 | + return _constant_pad(x, pad_width, constant_values) |
| 357 | + elif mode == "edge": |
| 358 | + return _edge_pad(x, pad_width) |
| 359 | + elif mode in ["maximum", "minimum", "mean", "median"]: |
| 360 | + if mode == "median": |
| 361 | + # TODO: pt.quantile? pt.median? |
| 362 | + raise NotImplementedError("Median padding not implemented") |
| 363 | + stat_func = stat_funcs[mode] |
| 364 | + return _stat_pad(x, pad_width, stat_func, **kwargs) |
| 365 | + elif mode == "linear_ramp": |
| 366 | + end_values = kwargs.pop("end_values", 0) |
| 367 | + return _linear_ramp_pad(x, pad_width, end_values) |
| 368 | + elif mode == "wrap": |
| 369 | + return _looping_pad(x, pad_width, kind="wrap") |
| 370 | + elif mode == "symmetric": |
| 371 | + reflect_type = kwargs.pop("reflect_type", "even") |
| 372 | + if reflect_type == "odd": |
| 373 | + raise NotImplementedError("Odd reflection not implemented") |
| 374 | + return _looping_pad(x, pad_width, kind="symmetric") |
| 375 | + elif mode == "reflect": |
| 376 | + reflect_type = kwargs.pop("reflect_type", "even") |
| 377 | + if reflect_type == "odd": |
| 378 | + raise NotImplementedError("Odd reflection not implemented") |
| 379 | + raise NotImplementedError("Reflect padding not implemented") |
| 380 | + else: |
| 381 | + raise ValueError(f"Invalid mode: {mode}") |
| 382 | + |
| 383 | + |
| 384 | +__all__ = ["pad"] |
0 commit comments