-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathtest_balancing_learner.py
74 lines (56 loc) · 2.57 KB
/
test_balancing_learner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from __future__ import annotations
import pytest
from adaptive.learner import BalancingLearner, Learner1D, SequenceLearner
from adaptive.runner import simple
strategies = ["loss", "loss_improvements", "npoints", "cycle"]
def test_balancing_learner_loss_cache():
learner = Learner1D(lambda x: x, bounds=(-1, 1))
learner.tell(-1, -1)
learner.tell(1, 1)
learner.tell_pending(0)
real_loss = learner.loss(real=True)
pending_loss = learner.loss(real=False)
# Test if the real and pending loss are cached correctly
bl = BalancingLearner([learner])
assert bl.loss(real=True) == real_loss
assert bl.loss(real=False) == pending_loss
# Test if everything is still fine when executed in the reverse order
bl = BalancingLearner([learner])
assert bl.loss(real=False) == pending_loss
assert bl.loss(real=True) == real_loss
@pytest.mark.parametrize("strategy", strategies)
def test_distribute_first_points_over_learners(strategy):
for initial_points in [0, 3]:
learners = [Learner1D(lambda x: x, bounds=(-1, 1)) for i in range(10)]
learner = BalancingLearner(learners, strategy=strategy)
points = learner.ask(initial_points)[0]
learner.tell_many(points, points)
points, _ = learner.ask(100)
i_learner, xs = zip(*points)
# assert that are all learners in the suggested points
assert len(set(i_learner)) == len(learners)
@pytest.mark.parametrize("strategy", strategies)
def test_ask_0(strategy):
learners = [Learner1D(lambda x: x, bounds=(-1, 1)) for i in range(10)]
learner = BalancingLearner(learners, strategy=strategy)
points, _ = learner.ask(0)
assert len(points) == 0
@pytest.mark.parametrize(
"strategy, goal_type, goal",
[
("loss", "loss_goal", 0.1),
("loss_improvements", "loss_goal", 0.1),
("npoints", "goal", lambda bl: all(lrn.npoints > 10 for lrn in bl.learners)),
("cycle", "loss_goal", 0.1),
],
)
def test_strategies(strategy, goal_type, goal):
learners = [Learner1D(lambda x: x, bounds=(-1, 1)) for i in range(10)]
learner = BalancingLearner(learners, strategy=strategy)
simple(learner, **{goal_type: goal})
def test_sequential_strategy() -> None:
learners = [SequenceLearner(lambda x: x, sequence=[0, 1, 2, 3]) for i in range(10)]
learner = BalancingLearner(learners, strategy="sequential") # type: ignore[arg-type]
simple(learner, goal=lambda lrn: sum(x.npoints for x in lrn.learners) >= 4 * 5)
assert all(lrn.done() for lrn in learners[:5])
assert all(not lrn.done() for lrn in learners[5:])