-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathweighted.py
349 lines (321 loc) · 12.7 KB
/
weighted.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import numpy as np
from graphblas import Matrix, Vector, binary, indexunary, monoid, replace, select, unary
from graphblas.semiring import any_pair, min_plus
from .._bfs import _bfs_level, _bfs_levels, _bfs_parent, _bfs_plain
from ..exceptions import NoPath, Unbounded
__all__ = [
"single_source_bellman_ford_path_length",
"bellman_ford_path",
"bellman_ford_path_length",
"bellman_ford_path_lengths",
"negative_edge_cycle",
]
def _bellman_ford_path_length(G, source, target=None, *, cutoff=None, name):
# No need for `is_weighted=` keyword, b/c this is assumed to be weighted (I think)
src_id = G._key_to_id[source]
if target is not None:
dst_id = G._key_to_id[target]
else:
dst_id = None
if G.get_property("is_iso"):
# If the edges are iso-valued (and positive), then we can simply do level BFS
is_negative, iso_value = G.get_properties("has_negative_edges+ iso_value")
if not is_negative:
if cutoff is not None:
cutoff = int(cutoff // iso_value.get())
d = _bfs_level(G, source, target, cutoff=cutoff, dtype=iso_value.dtype)
if dst_id is not None:
d = d.get(dst_id)
if d is None:
raise NoPath(f"node {target} not reachable from {source}")
if iso_value != 1:
d *= iso_value
return d
# It's difficult to detect negative cycles with BFS
if G._A[src_id, src_id].get() is not None:
raise Unbounded("Negative cycle detected.")
if not G.is_directed() and G._A[src_id, :].nvals > 0:
# For undirected graphs, any negative edge is a cycle
raise Unbounded("Negative cycle detected.")
# Use `offdiag` instead of `A`, b/c self-loops don't contribute to the result,
# and negative self-loops are easy negative cycles to avoid.
# We check if we hit a self-loop negative cycle at the end.
if dst_id is None:
A, has_negative_diagonal = G.get_properties("offdiag has_negative_diagonal")
else:
A, is_negative, has_negative_diagonal = G.get_properties(
"offdiag has_negative_edges- has_negative_diagonal"
)
if A.dtype == bool:
# Should we upcast e.g. INT8 to INT64 as well?
dtype = int
else:
dtype = A.dtype
n = A.nrows
d = Vector(dtype, n, name="single_source_bellman_ford_path_length")
d[src_id] = 0
cur = d.dup(name="cur")
mask = Vector(bool, n, name="mask")
one = unary.one[bool]
for _i in range(n - 1):
# This is a slightly modified Bellman-Ford algorithm.
# `cur` is the current frontier of values that improved in the previous iteration.
# This means that in this iteration we drop values from `cur` that are not better.
cur << min_plus(cur @ A)
if cutoff is not None:
cur << select.valuele(cur, cutoff)
# Mask is True where cur not in d or cur < d
mask << one(cur)
mask(binary.second) << binary.lt(cur & d)
# Drop values from `cur` that didn't improve
cur(mask.V, replace) << cur
if cur.nvals == 0:
break
# Update `d` with values that improved
d(cur.S) << cur
if dst_id is not None and not is_negative:
# Limit exploration if we have a target
cutoff = cur.get(dst_id, cutoff)
else:
# Check for negative cycle when for loop completes without breaking
cur << min_plus(cur @ A)
if cutoff is not None:
cur << select.valuele(cur, cutoff)
mask << binary.lt(cur & d)
if dst_id is None and mask.reduce(monoid.lor) or dst_id is not None and mask.get(dst_id):
raise Unbounded("Negative cycle detected.")
if has_negative_diagonal:
# We removed diagonal entries above, so check if we visited one with a negative weight
diag = G.get_property("diag")
cur << select.valuelt(diag, 0)
if any_pair(d @ cur):
raise Unbounded("Negative cycle detected.")
if dst_id is not None:
d = d.get(dst_id)
if d is None:
raise NoPath(f"node {target} not reachable from {source}")
return d
def single_source_bellman_ford_path_length(
G, source, *, cutoff=None, name="single_source_bellman_ford_path_length"
):
return _bellman_ford_path_length(G, source, cutoff=cutoff, name=name)
def bellman_ford_path_length(G, source, target):
return _bellman_ford_path_length(G, source, target, name="bellman_ford_path_length")
def bellman_ford_path_lengths(G, nodes=None, *, expand_output=False):
"""Extra parameter: expand_output.
Parameters
----------
expand_output : bool, default False
When False, the returned Matrix has one row per node in nodes.
When True, the returned Matrix has the same shape as the input Matrix.
"""
# Same algorithms as in `single_source_bellman_ford_path_length`, but with
# `Cur` as a Matrix with each row corresponding to a source node.
if G.get_property("is_iso"):
is_negative, iso_value = G.get_properties("has_negative_edges+ iso_value")
if not is_negative:
D = _bfs_levels(G, nodes, dtype=iso_value.dtype)
if iso_value != 1:
D *= iso_value
if nodes is not None and expand_output and D.ncols != D.nrows:
ids = G.list_to_ids(nodes)
rv = Matrix(D.dtype, D.ncols, D.ncols, name=D.name)
rv[ids, :] = D
return rv
return D
if not G.is_directed():
# For undirected graphs, any negative edge is a cycle
if nodes is not None:
ids = G.list_to_ids(nodes)
if G._A[ids, :].nvals > 0:
raise Unbounded("Negative cycle detected.")
elif G._A.nvals > 0:
raise Unbounded("Negative cycle detected.")
A, has_negative_diagonal = G.get_properties("offdiag has_negative_diagonal")
if A.dtype == bool:
dtype = int
else:
dtype = A.dtype
n = A.nrows
if nodes is None:
# TODO: `D = Vector.from_scalar(0, n, dtype).diag()`
D = Vector(dtype, n, name="bellman_ford_path_lengths_vector")
D << 0
D = D.diag(name="bellman_ford_path_lengths")
else:
ids = G.list_to_ids(nodes)
D = Matrix.from_coo(
np.arange(len(ids), dtype=np.uint64),
ids,
0,
dtype,
nrows=len(ids),
ncols=n,
name="bellman_ford_path_lengths",
)
Cur = D.dup(name="Cur")
Mask = Matrix(bool, D.nrows, D.ncols, name="Mask")
one = unary.one[bool]
for _i in range(n - 1):
Cur << min_plus(Cur @ A)
Mask << one(Cur)
Mask(binary.second) << binary.lt(Cur & D)
Cur(Mask.V, replace) << Cur
if Cur.nvals == 0:
break
D(Cur.S) << Cur
else:
Cur << min_plus(Cur @ A)
Mask << binary.lt(Cur & D)
if Mask.reduce_scalar(monoid.lor):
raise Unbounded("Negative cycle detected.")
if has_negative_diagonal:
diag = G.get_property("diag")
cur = select.valuelt(diag, 0)
if any_pair(D @ cur).nvals > 0:
raise Unbounded("Negative cycle detected.")
if nodes is not None and expand_output and D.ncols != D.nrows:
rv = Matrix(D.dtype, n, n, name=D.name)
rv[ids, :] = D
return rv
return D
def _reconstruct_path_from_parents(G, parents, src, dst):
indices, values = parents.to_coo(sort=False)
d = dict(zip(indices.tolist(), values.tolist(), strict=True))
if dst not in d:
return []
cur = dst
path = [cur]
while cur != src:
cur = d[cur]
path.append(cur)
return G.list_to_keys(reversed(path))
def bellman_ford_path(G, source, target):
src_id = G._key_to_id[source]
dst_id = G._key_to_id[target]
if G.get_property("is_iso"):
# If the edges are iso-valued (and positive), then we can simply do level BFS
is_negative = G.get_property("has_negative_edges+")
if not is_negative:
p = _bfs_parent(G, source, target)
return _reconstruct_path_from_parents(G, p, src_id, dst_id)
raise Unbounded("Negative cycle detected.")
A, is_negative, has_negative_diagonal = G.get_properties(
"offdiag has_negative_edges- has_negative_diagonal"
)
if A.dtype == bool:
# Should we upcast e.g. INT8 to INT64 as well?
dtype = int
else:
dtype = A.dtype
cutoff = None
n = A.nrows
d = Vector(dtype, n, name="bellman_ford_path_length")
d[src_id] = 0
p = Vector(int, n, name="bellman_ford_path_parent")
p[src_id] = src_id
prev = d.dup(name="prev")
cur = Vector(dtype, n, name="cur")
indices = Vector(int, n, name="indices")
mask = Vector(bool, n, name="mask")
B = Matrix(dtype, n, n, name="B")
Indices = Matrix(int, n, n, name="Indices")
cols = prev.to_coo(values=False)[0]
one = unary.one[bool]
for _i in range(n - 1):
# This is a slightly modified Bellman-Ford algorithm.
# `cur` is the current frontier of values that improved in the previous iteration.
# This means that in this iteration we drop values from `cur` that are not better.
cur << min_plus(prev @ A)
if cutoff is not None:
cur << select.valuele(cur, cutoff)
# Mask is True where cur not in d or cur < d
mask << one(cur)
mask(binary.second) << binary.lt(cur & d)
# Drop values from `cur` that didn't improve
cur(mask.V, replace) << cur
if cur.nvals == 0:
break
# Update `d` with values that improved
d(cur.S) << cur
if not is_negative:
# Limit exploration if we have a target
cutoff = cur.get(dst_id, cutoff)
# Now try to find the parents!
# This is also not standard. Typically, UDTs and UDFs are used to keep
# track of both the minimum element and the parent id at the same time.
# Only include rows and columns that were used this iteration.
rows = cols
cols = cur.to_coo(values=False)[0]
B.clear()
B[rows, cols] = A[rows, cols]
# Reverse engineer to determine parent
B << binary.plus(prev & B)
B << binary.iseq(B & cur)
B << select.valuene(B, False)
Indices << indexunary.rowindex(B)
indices << Indices.reduce_columnwise(monoid.min)
p(indices.S) << indices
prev, cur = cur, prev
else:
# Check for negative cycle when for loop completes without breaking
cur << min_plus(prev @ A)
if cutoff is not None:
cur << select.valuele(cur, cutoff)
mask << binary.lt(cur & d)
if mask.get(dst_id):
raise Unbounded("Negative cycle detected.")
path = _reconstruct_path_from_parents(G, p, src_id, dst_id)
if has_negative_diagonal and path:
mask.clear()
mask[G.list_to_ids(path)] = True
diag = G.get_property("diag", mask=mask.S)
if diag.nvals > 0:
raise Unbounded("Negative cycle detected.")
mask << binary.first(mask & cur) # mask(cur.S, replace) << mask
if mask.nvals > 0:
# Is there a path from any visited node with negative self-loop to target?
# We could actually stop as soon as any from `path` is visited
indices, _ = mask.to_coo(values=False)[0]
q = _bfs_plain(G, target=target, index=indices, cutoff=_i)
if dst_id in q:
raise Unbounded("Negative cycle detected.")
return path
def negative_edge_cycle(G):
# TODO: use a heuristic to try to stop early
if G.is_directed():
deg = "total_degrees-"
else:
deg = "degrees-"
A, degrees, has_negative_diagonal, has_negative_edges = G.get_properties(
f"offdiag {deg} has_negative_diagonal has_negative_edges-"
)
if has_negative_diagonal:
return True
if not has_negative_edges:
return False
if A.dtype == bool:
# Should we upcast e.g. INT8 to INT64 as well?
dtype = int
else:
dtype = A.dtype
n = A.nrows
# Begin from every node that has edges
d = Vector(dtype, n, name="negative_edge_cycle")
d(degrees.S) << 0
cur = d.dup(name="cur")
mask = Vector(bool, n, name="mask")
one = unary.one[bool]
for _i in range(n - 1):
cur << min_plus(cur @ A)
mask << one(cur)
mask(binary.second) << binary.lt(cur & d)
cur(mask.V, replace) << cur
if cur.nvals == 0:
return False
d(cur.S) << cur
cur << min_plus(cur @ A)
mask << binary.lt(cur & d)
if mask.reduce(monoid.lor):
return True
return False