-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgraph.py
457 lines (396 loc) · 14.4 KB
/
graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
from collections import defaultdict
import graphblas as gb
from graphblas import Matrix, Vector, select
import graphblas_algorithms as ga
from . import _utils
from ._caching import NONNEGATIVE_DTYPES, get_reduce_to_scalar, get_reduce_to_vector
def get_A(G, mask=None):
"""``A``."""
return G._A
def get_AT(G, mask=None):
"""``A.T``."""
A = G._A
G._cache["AT"] = A
return A
def get_offdiag(G, mask=None):
"""``select.offdiag(A)``."""
A = G._A
cache = G._cache
if "offdiag" not in cache:
if cache.get("has_self_edges") is False:
cache["offdiag"] = A
else:
cache["offdiag"] = select.offdiag(A).new(name="offdiag")
if "has_self_edges" not in cache:
cache["has_self_edges"] = A.nvals > cache["offdiag"].nvals
if not cache["has_self_edges"]:
cache["offdiag"] = A
return cache["offdiag"]
def get_Up(G, mask=None):
"""``select.triu(A)``."""
A = G._A
cache = G._cache
if "U+" not in cache:
if "U-" in cache and not G.get_property("has_self_edges"):
cache["U+"] = cache["U-"]
else:
cache["U+"] = select.triu(A).new(name="U+")
if "has_self_edges" not in cache:
cache["has_self_edges"] = 2 * cache["U+"].nvals > A.nvals
if not cache["has_self_edges"]:
cache["U-"] = cache["U+"]
return cache["U+"]
def get_Lp(G, mask=None):
"""``select.tril(A)``."""
A = G._A
cache = G._cache
if "L+" not in cache:
if "L-" in cache and not G.get_property("has_self_edges"):
cache["L+"] = cache["L-"]
else:
cache["L+"] = select.tril(A).new(name="L+")
if "has_self_edges" not in cache:
cache["has_self_edges"] = 2 * cache["L+"].nvals > A.nvals
if not cache["has_self_edges"]:
cache["L-"] = cache["L+"]
return cache["L+"]
def get_Um(G, mask=None):
"""``select.triu(A, 1)``."""
A = G._A
cache = G._cache
if "U-" not in cache:
if "U+" in cache:
if G.get_property("has_self_edges"):
cache["U-"] = select.triu(cache["U+"], 1).new(name="U-")
else:
cache["U-"] = cache["U+"]
elif "offdiag" in cache:
cache["U-"] = select.triu(cache["offdiag"], 1).new(name="U-")
else:
cache["U-"] = select.triu(A, 1).new(name="U-")
if "has_self_edges" not in cache:
cache["has_self_edges"] = 2 * cache["U-"].nvals < A.nvals
if not cache["has_self_edges"]:
cache["U+"] = cache["U-"]
return cache["U-"]
def get_Lm(G, mask=None):
"""``select.tril(A, -1)``."""
A = G._A
cache = G._cache
if "L-" not in cache:
if "L+" in cache:
if G.get_property("has_self_edges"):
cache["L-"] = select.tril(cache["L+"], -1).new(name="L-")
else:
cache["L-"] = cache["L+"]
elif "offdiag" in cache:
cache["L-"] = select.tril(cache["offdiag"], -1).new(name="L-")
else:
cache["L-"] = select.tril(A, -1).new(name="L-")
if "has_self_edges" not in cache:
cache["has_self_edges"] = 2 * cache["L-"].nvals < A.nvals
if not cache["has_self_edges"]:
cache["L+"] = cache["L-"]
return cache["L-"]
def get_diag(G, mask=None):
"""``A.diag()``."""
A = G._A
cache = G._cache
if "diag" not in cache:
if cache.get("has_self_edges") is False:
cache["diag"] = Vector(A.dtype, size=A.nrows, name="diag")
elif "U+" in cache:
cache["diag"] = cache["U+"].diag(name="diag")
elif "L+" in cache:
cache["diag"] = cache["L+"].diag(name="diag")
else:
cache["diag"] = A.diag(name="diag")
if "has_self_edges" not in cache:
cache["has_self_edges"] = cache["diag"].nvals > 0
if mask is not None:
return cache["diag"].dup(mask=mask)
return cache["diag"]
def has_negative_diagonal(G, mask=None):
A = G._A
cache = G._cache
if "has_negative_diagonal" not in cache:
if A.dtype in NONNEGATIVE_DTYPES or A.dtype._is_udt or cache.get("has_self_edges") is False:
cache["has_negative_diagonal"] = False
elif (
cache.get("has_negative_edges+") is True
and cache.get("has_negative_edges-") is False
or cache.get("has_negative_edges+") is True
and cache.get("min_element-", 0) >= 0
or cache.get("min_element+", 0) < 0
and cache.get("min_element+", 0) < cache.get("min_element-", 0)
):
cache["has_negative_diagonal"] = True
else:
cache["has_negative_diagonal"] = G.get_property("min_diagonal").get(0) < 0
return cache["has_negative_diagonal"]
def has_negative_edgesp(G, mask=None):
A = G._A
cache = G._cache
if "has_negative_edges+" not in cache:
if A.dtype in NONNEGATIVE_DTYPES or A.dtype._is_udt:
cache["has_negative_edges+"] = False
elif (
cache.get("has_negative_edges-")
or cache.get("min_element+", 0) < 0
or cache.get("min_element-", 0) < 0
or cache.get("min_diagonal", 0) < 0
or cache.get("has_negative_diagonal")
):
cache["has_negative_edges+"] = True
elif cache.get("iso_value") is not None:
cache["has_negative_edges+"] = cache["iso_value"].get(0) < 0
elif cache.get("has_negative_edges-") is False:
cache["has_negative_edges+"] = G.get_property("min_diagonal").get(0) < 0
else:
cache["has_negative_edges+"] = G.get_property("min_element+").get(0) < 0
return cache["has_negative_edges+"]
def has_negative_edgesm(G, mask=None):
A = G._A
cache = G._cache
if "has_negative_edges-" not in cache:
if A.dtype in NONNEGATIVE_DTYPES or A.dtype._is_udt:
cache["has_negative_edges-"] = False
elif (
cache.get("has_negative_edges+")
and cache.get("has_self_edges") is False
or cache.get("has_negative_edges+")
and cache.get("has_negative_diagonal") is False
):
cache["has_negative_edges-"] = True
else:
cache["has_negative_edges-"] = G.get_property("min_element-").get(0) < 0
return cache["has_negative_edges-"]
def has_self_edges(G, mask=None):
"""``A.diag().nvals > 0``."""
A = G._A
cache = G._cache
if "has_self_edges" not in cache:
if "L+" in cache:
cache["has_self_edges"] = 2 * cache["L+"].nvals > A.nvals
elif "L-" in cache:
cache["has_self_edges"] = 2 * cache["L-"].nvals < A.nvals
elif "U+" in cache:
cache["has_self_edges"] = 2 * cache["U+"].nvals > A.nvals
elif "U-" in cache:
cache["has_self_edges"] = 2 * cache["U-"].nvals < A.nvals
elif "offdiag" in cache:
cache["has_self_edges"] = A.nvals > cache["offdiag"].nvals
elif cache.get("has_negative_diagonal") is True:
cache["has_self_edges"] = True
else:
G.get_property("diag")
return cache["has_self_edges"]
def is_iso(G, mask=None):
A = G._A
cache = G._cache
if "is_iso" not in cache:
if "iso_value" in cache:
cache["is_iso"] = cache["iso_value"] is not None
else:
# SuiteSparse:GraphBLAS. `A` may still be iso-valued even if `A.ss.is_iso` is False.
# Should we check this or rely on `A.ss.is_iso` b/c it's fast and should usually work?
cache["is_iso"] = A.ss.is_iso
return cache["is_iso"]
def get_iso_value(G, mask=None):
A = G._A
cache = G._cache
if "iso_value" not in cache:
if "is_iso" in cache:
if cache["is_iso"]:
# SuiteSparse:GraphBLAS
cache["iso_value"] = A.ss.iso_value
else:
cache["iso_value"]
# min_val, max_val = G.get_properties('min_element+ max_element+')
# SuiteSparse:GraphBLAS
elif A.ss.is_iso:
cache["iso_value"] = A.ss.iso_value
cache["is_iso"] = True
else:
cache["iso_value"] = None
cache["is_iso"] = False
return cache["iso_value"]
def to_undirected_graph(G, weight=None, dtype=None):
# We should do some sanity checks here to ensure we're returning a valid undirected graph
if isinstance(G, Graph):
return G
try:
return Graph(G)
except TypeError:
pass
try:
import networkx as nx
if isinstance(G, nx.Graph):
return Graph.from_networkx(G, weight=weight, dtype=dtype)
except ImportError:
pass
raise TypeError
class AutoDict(dict):
def __missing__(self, key):
# Automatically compute keys such as "plus_rowwise-" and "max_element+"
if key[-1] in {"-", "+"}:
keybase = key[:-1]
if keybase.endswith("_rowwise"):
opname = keybase[: -len("_rowwise")]
methodname = "reduce_rowwise"
elif keybase.endswith("_columnwise"):
opname = keybase[: -len("_columnwise")]
methodname = "reduce_rowwise"
elif keybase.endswith("_element"):
opname = keybase[: -len("_element")]
methodname = "reduce_scalar"
else:
raise KeyError(key)
if methodname == "reduce_scalar":
get_reduction = get_reduce_to_scalar(key, opname)
else:
get_reduction = get_reduce_to_vector(key, opname, methodname)
self[f"{opname}_columnwise{key[-1]}"] = get_reduction
elif key.endswith("_diagonal"):
# e.g., min_diagonal
opname = key[: -len("_diagonal")]
get_reduction = get_reduce_to_scalar(key, opname)
else:
raise KeyError(key)
self[key] = get_reduction
return get_reduction
class Graph:
__networkx_backend__ = "graphblas"
__networkx_plugin__ = "graphblas"
# "-" properties ignore self-edges, "+" properties include self-edges
# Ideally, we would have "max_rowwise+" come before "max_element+".
_property_priority = defaultdict(
lambda: Graph._property_priority["has_self_edges"] - 0.5,
{
key: i
for i, key in enumerate(
[
"A",
"AT",
"offdiag",
"U+",
"L+",
"U-",
"L-",
"diag",
"count_rowwise+",
"count_rowwise-",
"min_diagonal",
"min_element+",
"min_element-",
"has_negative_diagonal",
"has_negative_edges-",
"has_negative_edges+",
"has_self_edges",
]
)
},
)
_get_property = AutoDict(
{
"A": get_A,
"AT": get_AT,
"offdiag": get_offdiag,
"U+": get_Up,
"L+": get_Lp,
"U-": get_Um,
"L-": get_Lm,
"diag": get_diag,
"is_iso": is_iso,
"iso_value": get_iso_value,
"has_negative_diagonal": has_negative_diagonal,
"has_negative_edges-": has_negative_edgesm,
"has_negative_edges+": has_negative_edgesp,
"has_self_edges": has_self_edges,
}
)
_cache_aliases = {
"degrees+": "count_rowwise+",
"degrees-": "count_rowwise-",
"row_degrees+": "count_rowwise+",
"row_degrees-": "count_rowwise-",
"column_degrees+": "count_rowwise+",
"column_degrees-": "count_rowwise-",
}
graph_attr_dict_factory = dict
def __init__(self, incoming_graph_data=None, *, key_to_id=None, **attr):
if incoming_graph_data is not None:
# Does not copy if A is a Matrix!
A = gb.core.utils.ensure_type(incoming_graph_data, Matrix)
if A.nrows != A.ncols:
raise ValueError(f"Adjacency matrix must be square; got {A.nrows} x {A.ncols}")
else:
A = Matrix()
self.graph_attr_dict_factory = self.graph_attr_dict_factory
self.graph = self.graph_attr_dict_factory() # dictionary for graph attributes
self.graph.update(attr)
# Graphblas-specific properties
self._A = A
if key_to_id is None:
key_to_id = {i: i for i in range(A.nrows)}
self._key_to_id = key_to_id
self._id_to_key = None
self._cache = {}
# Graphblas-specific methods
from_networkx = classmethod(_utils.from_networkx)
id_to_key = property(_utils.id_to_key)
get_property = _utils.get_property
get_properties = _utils.get_properties
dict_to_vector = _utils.dict_to_vector
list_to_vector = _utils.list_to_vector
list_to_mask = _utils.list_to_mask
list_to_ids = _utils.list_to_ids
list_to_keys = _utils.list_to_keys
matrix_to_dicts = _utils.matrix_to_dicts
matrix_to_nodenodemap = _utils.matrix_to_nodenodemap
matrix_to_vectornodemap = _utils.matrix_to_vectornodemap
set_to_vector = _utils.set_to_vector
to_networkx = _utils.to_networkx
vector_to_dict = _utils.vector_to_dict
vector_to_list = _utils.vector_to_list
vector_to_nodemap = _utils.vector_to_nodemap
vector_to_nodeset = _utils.vector_to_nodeset
vector_to_set = _utils.vector_to_set
_cacheit = _utils._cacheit
renumber_key_to_id = _utils.renumber_key_to_id
# NetworkX methods
def to_directed_class(self):
return ga.DiGraph
def to_undirected_class(self):
return Graph
@property
def name(self):
return self.graph.get("name", "")
@name.setter
def name(self, s):
self._A.name = s
self.graph["name"] = s
@property
def matrix(self):
return self._A
def __iter__(self):
return iter(self._key_to_id)
def __contains__(self, n):
try:
return n in self._key_to_id
except TypeError:
return False
def __len__(self):
return self._A.nrows
def number_of_nodes(self):
return self._A.nrows
def order(self):
return self._A.nrows
def is_multigraph(self):
return False
def is_directed(self):
return False
class MultiGraph(Graph):
def is_multigraph(self):
return True
__all__ = ["Graph", "MultiGraph"]