|
56 | 56 | "import time\n",
|
57 | 57 | "from IPython.display import display\n",
|
58 | 58 | "\n",
|
59 |
| - "from simulation.model import Param, Runner\n", |
| 59 | + "from simulation.model import Param, Runner, run_scenarios\n", |
60 | 60 | "from simulation.replications import confidence_interval_method"
|
61 | 61 | ]
|
62 | 62 | },
|
|
156 | 156 | " <th>q_time_nurse</th>\n",
|
157 | 157 | " <th>time_with_nurse</th>\n",
|
158 | 158 | " <th>run</th>\n",
|
159 |
| - " <th>q_time_unseen</th>\n", |
| 159 | + " <th>q_time_unseen_nurse</th>\n", |
160 | 160 | " </tr>\n",
|
161 | 161 | " </thead>\n",
|
162 | 162 | " <tbody>\n",
|
|
278 | 278 | "1888 368 1988.648731 0.0 24.898160 4 \n",
|
279 | 279 | "1889 369 1993.658168 0.0 3.353385 4 \n",
|
280 | 280 | "\n",
|
281 |
| - " q_time_unseen \n", |
282 |
| - "0 NaN \n", |
283 |
| - "1 NaN \n", |
284 |
| - "2 NaN \n", |
285 |
| - "3 NaN \n", |
286 |
| - "4 NaN \n", |
287 |
| - "... ... \n", |
288 |
| - "1885 NaN \n", |
289 |
| - "1886 NaN \n", |
290 |
| - "1887 NaN \n", |
291 |
| - "1888 NaN \n", |
292 |
| - "1889 NaN \n", |
| 281 | + " q_time_unseen_nurse \n", |
| 282 | + "0 NaN \n", |
| 283 | + "1 NaN \n", |
| 284 | + "2 NaN \n", |
| 285 | + "3 NaN \n", |
| 286 | + "4 NaN \n", |
| 287 | + "... ... \n", |
| 288 | + "1885 NaN \n", |
| 289 | + "1886 NaN \n", |
| 290 | + "1887 NaN \n", |
| 291 | + "1888 NaN \n", |
| 292 | + "1889 NaN \n", |
293 | 293 | "\n",
|
294 | 294 | "[1890 rows x 6 columns]"
|
295 | 295 | ]
|
|
339 | 339 | " <th>mean_nurse_utilisation</th>\n",
|
340 | 340 | " <th>mean_nurse_utilisation_tw</th>\n",
|
341 | 341 | " <th>mean_nurse_q_length</th>\n",
|
342 |
| - " <th>count_unseen</th>\n", |
343 |
| - " <th>mean_q_time_unseen</th>\n", |
| 342 | + " <th>count_nurse_unseen</th>\n", |
| 343 | + " <th>mean_q_time_nurse_unseen</th>\n", |
344 | 344 | " </tr>\n",
|
345 | 345 | " </thead>\n",
|
346 | 346 | " <tbody>\n",
|
|
428 | 428 | "3 0.639573 0.639573 0.544915 \n",
|
429 | 429 | "4 0.601042 0.601042 0.406760 \n",
|
430 | 430 | "\n",
|
431 |
| - " count_unseen mean_q_time_unseen \n", |
432 |
| - "0 0 NaN \n", |
433 |
| - "1 0 NaN \n", |
434 |
| - "2 0 NaN \n", |
435 |
| - "3 0 NaN \n", |
436 |
| - "4 0 NaN " |
| 431 | + " count_nurse_unseen mean_q_time_nurse_unseen \n", |
| 432 | + "0 0 NaN \n", |
| 433 | + "1 0 NaN \n", |
| 434 | + "2 0 NaN \n", |
| 435 | + "3 0 NaN \n", |
| 436 | + "4 0 NaN " |
437 | 437 | ]
|
438 | 438 | },
|
439 | 439 | "metadata": {},
|
|
659 | 659 | " <th>mean_nurse_utilisation</th>\n",
|
660 | 660 | " <th>mean_nurse_utilisation_tw</th>\n",
|
661 | 661 | " <th>mean_nurse_q_length</th>\n",
|
662 |
| - " <th>count_unseen</th>\n", |
663 |
| - " <th>mean_q_time_unseen</th>\n", |
| 662 | + " <th>count_nurse_unseen</th>\n", |
| 663 | + " <th>mean_q_time_nurse_unseen</th>\n", |
664 | 664 | " </tr>\n",
|
665 | 665 | " </thead>\n",
|
666 | 666 | " <tbody>\n",
|
|
725 | 725 | "lower_95_ci 0.609435 0.609435 \n",
|
726 | 726 | "upper_95_ci 0.669667 0.669667 \n",
|
727 | 727 | "\n",
|
728 |
| - " mean_nurse_q_length count_unseen mean_q_time_unseen \n", |
729 |
| - "mean 0.531240 0.0 NaN \n", |
730 |
| - "std_dev 0.195914 0.0 NaN \n", |
731 |
| - "lower_95_ci 0.287981 0.0 NaN \n", |
732 |
| - "upper_95_ci 0.774500 0.0 NaN " |
| 728 | + " mean_nurse_q_length count_nurse_unseen mean_q_time_nurse_unseen \n", |
| 729 | + "mean 0.531240 0.0 NaN \n", |
| 730 | + "std_dev 0.195914 0.0 NaN \n", |
| 731 | + "lower_95_ci 0.287981 0.0 NaN \n", |
| 732 | + "upper_95_ci 0.774500 0.0 NaN " |
733 | 733 | ]
|
734 | 734 | },
|
735 | 735 | "metadata": {},
|
|
743 | 743 | " os.path.join(TESTS, 'overall.csv'), index=True)"
|
744 | 744 | ]
|
745 | 745 | },
|
| 746 | + { |
| 747 | + "cell_type": "markdown", |
| 748 | + "metadata": {}, |
| 749 | + "source": [ |
| 750 | + "## Scenario analysis" |
| 751 | + ] |
| 752 | + }, |
| 753 | + { |
| 754 | + "cell_type": "code", |
| 755 | + "execution_count": 10, |
| 756 | + "metadata": {}, |
| 757 | + "outputs": [ |
| 758 | + { |
| 759 | + "name": "stdout", |
| 760 | + "output_type": "stream", |
| 761 | + "text": [ |
| 762 | + "There are 4 scenarios. Running:\n", |
| 763 | + "{'patient_inter': 3, 'number_of_nurses': 6}\n", |
| 764 | + "{'patient_inter': 3, 'number_of_nurses': 7}\n", |
| 765 | + "{'patient_inter': 4, 'number_of_nurses': 6}\n", |
| 766 | + "{'patient_inter': 4, 'number_of_nurses': 7}\n" |
| 767 | + ] |
| 768 | + }, |
| 769 | + { |
| 770 | + "data": { |
| 771 | + "text/html": [ |
| 772 | + "<div>\n", |
| 773 | + "<style scoped>\n", |
| 774 | + " .dataframe tbody tr th:only-of-type {\n", |
| 775 | + " vertical-align: middle;\n", |
| 776 | + " }\n", |
| 777 | + "\n", |
| 778 | + " .dataframe tbody tr th {\n", |
| 779 | + " vertical-align: top;\n", |
| 780 | + " }\n", |
| 781 | + "\n", |
| 782 | + " .dataframe thead th {\n", |
| 783 | + " text-align: right;\n", |
| 784 | + " }\n", |
| 785 | + "</style>\n", |
| 786 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 787 | + " <thead>\n", |
| 788 | + " <tr style=\"text-align: right;\">\n", |
| 789 | + " <th></th>\n", |
| 790 | + " <th>run_number</th>\n", |
| 791 | + " <th>scenario</th>\n", |
| 792 | + " <th>arrivals</th>\n", |
| 793 | + " <th>mean_q_time_nurse</th>\n", |
| 794 | + " <th>mean_time_with_nurse</th>\n", |
| 795 | + " <th>mean_nurse_utilisation</th>\n", |
| 796 | + " <th>mean_nurse_utilisation_tw</th>\n", |
| 797 | + " <th>mean_nurse_q_length</th>\n", |
| 798 | + " <th>count_nurse_unseen</th>\n", |
| 799 | + " <th>mean_q_time_nurse_unseen</th>\n", |
| 800 | + " <th>patient_inter</th>\n", |
| 801 | + " <th>number_of_nurses</th>\n", |
| 802 | + " </tr>\n", |
| 803 | + " </thead>\n", |
| 804 | + " <tbody>\n", |
| 805 | + " <tr>\n", |
| 806 | + " <th>0</th>\n", |
| 807 | + " <td>0</td>\n", |
| 808 | + " <td>0</td>\n", |
| 809 | + " <td>2004</td>\n", |
| 810 | + " <td>0.486680</td>\n", |
| 811 | + " <td>9.925934</td>\n", |
| 812 | + " <td>0.553955</td>\n", |
| 813 | + " <td>0.553955</td>\n", |
| 814 | + " <td>0.162551</td>\n", |
| 815 | + " <td>0</td>\n", |
| 816 | + " <td>NaN</td>\n", |
| 817 | + " <td>3</td>\n", |
| 818 | + " <td>6</td>\n", |
| 819 | + " </tr>\n", |
| 820 | + " <tr>\n", |
| 821 | + " <th>1</th>\n", |
| 822 | + " <td>1</td>\n", |
| 823 | + " <td>0</td>\n", |
| 824 | + " <td>1993</td>\n", |
| 825 | + " <td>0.746175</td>\n", |
| 826 | + " <td>10.377197</td>\n", |
| 827 | + " <td>0.573874</td>\n", |
| 828 | + " <td>0.573874</td>\n", |
| 829 | + " <td>0.247854</td>\n", |
| 830 | + " <td>0</td>\n", |
| 831 | + " <td>NaN</td>\n", |
| 832 | + " <td>3</td>\n", |
| 833 | + " <td>6</td>\n", |
| 834 | + " </tr>\n", |
| 835 | + " <tr>\n", |
| 836 | + " <th>2</th>\n", |
| 837 | + " <td>2</td>\n", |
| 838 | + " <td>0</td>\n", |
| 839 | + " <td>2017</td>\n", |
| 840 | + " <td>0.386324</td>\n", |
| 841 | + " <td>9.856724</td>\n", |
| 842 | + " <td>0.553419</td>\n", |
| 843 | + " <td>0.553419</td>\n", |
| 844 | + " <td>0.129869</td>\n", |
| 845 | + " <td>0</td>\n", |
| 846 | + " <td>NaN</td>\n", |
| 847 | + " <td>3</td>\n", |
| 848 | + " <td>6</td>\n", |
| 849 | + " </tr>\n", |
| 850 | + " <tr>\n", |
| 851 | + " <th>0</th>\n", |
| 852 | + " <td>0</td>\n", |
| 853 | + " <td>1</td>\n", |
| 854 | + " <td>2004</td>\n", |
| 855 | + " <td>0.121476</td>\n", |
| 856 | + " <td>9.925934</td>\n", |
| 857 | + " <td>0.474819</td>\n", |
| 858 | + " <td>0.474819</td>\n", |
| 859 | + " <td>0.040573</td>\n", |
| 860 | + " <td>0</td>\n", |
| 861 | + " <td>NaN</td>\n", |
| 862 | + " <td>3</td>\n", |
| 863 | + " <td>7</td>\n", |
| 864 | + " </tr>\n", |
| 865 | + " <tr>\n", |
| 866 | + " <th>1</th>\n", |
| 867 | + " <td>1</td>\n", |
| 868 | + " <td>1</td>\n", |
| 869 | + " <td>1993</td>\n", |
| 870 | + " <td>0.226682</td>\n", |
| 871 | + " <td>10.377197</td>\n", |
| 872 | + " <td>0.491892</td>\n", |
| 873 | + " <td>0.491892</td>\n", |
| 874 | + " <td>0.075296</td>\n", |
| 875 | + " <td>0</td>\n", |
| 876 | + " <td>NaN</td>\n", |
| 877 | + " <td>3</td>\n", |
| 878 | + " <td>7</td>\n", |
| 879 | + " </tr>\n", |
| 880 | + " </tbody>\n", |
| 881 | + "</table>\n", |
| 882 | + "</div>" |
| 883 | + ], |
| 884 | + "text/plain": [ |
| 885 | + " run_number scenario arrivals mean_q_time_nurse mean_time_with_nurse \\\n", |
| 886 | + "0 0 0 2004 0.486680 9.925934 \n", |
| 887 | + "1 1 0 1993 0.746175 10.377197 \n", |
| 888 | + "2 2 0 2017 0.386324 9.856724 \n", |
| 889 | + "0 0 1 2004 0.121476 9.925934 \n", |
| 890 | + "1 1 1 1993 0.226682 10.377197 \n", |
| 891 | + "\n", |
| 892 | + " mean_nurse_utilisation mean_nurse_utilisation_tw mean_nurse_q_length \\\n", |
| 893 | + "0 0.553955 0.553955 0.162551 \n", |
| 894 | + "1 0.573874 0.573874 0.247854 \n", |
| 895 | + "2 0.553419 0.553419 0.129869 \n", |
| 896 | + "0 0.474819 0.474819 0.040573 \n", |
| 897 | + "1 0.491892 0.491892 0.075296 \n", |
| 898 | + "\n", |
| 899 | + " count_nurse_unseen mean_q_time_nurse_unseen patient_inter \\\n", |
| 900 | + "0 0 NaN 3 \n", |
| 901 | + "1 0 NaN 3 \n", |
| 902 | + "2 0 NaN 3 \n", |
| 903 | + "0 0 NaN 3 \n", |
| 904 | + "1 0 NaN 3 \n", |
| 905 | + "\n", |
| 906 | + " number_of_nurses \n", |
| 907 | + "0 6 \n", |
| 908 | + "1 6 \n", |
| 909 | + "2 6 \n", |
| 910 | + "0 7 \n", |
| 911 | + "1 7 " |
| 912 | + ] |
| 913 | + }, |
| 914 | + "metadata": {}, |
| 915 | + "output_type": "display_data" |
| 916 | + } |
| 917 | + ], |
| 918 | + "source": [ |
| 919 | + "# Run scenarios\n", |
| 920 | + "param = Param(\n", |
| 921 | + " patient_inter=4,\n", |
| 922 | + " mean_n_consult_time=10,\n", |
| 923 | + " number_of_nurses=5,\n", |
| 924 | + " warm_up_period=2000,\n", |
| 925 | + " data_collection_period=6000,\n", |
| 926 | + " number_of_runs=3,\n", |
| 927 | + " audit_interval=120,\n", |
| 928 | + " cores=1\n", |
| 929 | + ")\n", |
| 930 | + "scenario_results = run_scenarios(\n", |
| 931 | + " scenarios={'patient_inter': [3, 4],\n", |
| 932 | + " 'number_of_nurses': [6, 7]},\n", |
| 933 | + " param=param\n", |
| 934 | + ")\n", |
| 935 | + "\n", |
| 936 | + "# Preview\n", |
| 937 | + "display(scenario_results.head())\n", |
| 938 | + "\n", |
| 939 | + "# Save to csv\n", |
| 940 | + "scenario_results.to_csv(os.path.join(TESTS, 'scenario.csv'), index=True)" |
| 941 | + ] |
| 942 | + }, |
746 | 943 | {
|
747 | 944 | "cell_type": "markdown",
|
748 | 945 | "metadata": {},
|
|
777 | 974 | },
|
778 | 975 | {
|
779 | 976 | "cell_type": "code",
|
780 |
| - "execution_count": 10, |
| 977 | + "execution_count": 11, |
781 | 978 | "metadata": {},
|
782 | 979 | "outputs": [
|
783 | 980 | {
|
|
1009 | 1206 | },
|
1010 | 1207 | {
|
1011 | 1208 | "cell_type": "code",
|
1012 |
| - "execution_count": 11, |
| 1209 | + "execution_count": 12, |
1013 | 1210 | "metadata": {},
|
1014 | 1211 | "outputs": [
|
1015 | 1212 | {
|
|
1031 | 1228 | }
|
1032 | 1229 | ],
|
1033 | 1230 | "metadata": {
|
| 1231 | + "kernelspec": { |
| 1232 | + "display_name": "template-des", |
| 1233 | + "language": "python", |
| 1234 | + "name": "python3" |
| 1235 | + }, |
1034 | 1236 | "language_info": {
|
1035 | 1237 | "codemirror_mode": {
|
1036 | 1238 | "name": "ipython",
|
|
0 commit comments