Skip to content

Commit 5a06e9c

Browse files
authored
Revert "Add mps device" (#1061)
Revert "Add mps device (#1018)" This reverts commit 616caed.
1 parent 616caed commit 5a06e9c

File tree

16 files changed

+44
-149
lines changed

16 files changed

+44
-149
lines changed

dcgan/README.md

+1-2
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@ usage: main.py [-h] --dataset DATASET --dataroot DATAROOT [--workers WORKERS]
2424
[--batchSize BATCHSIZE] [--imageSize IMAGESIZE] [--nz NZ]
2525
[--ngf NGF] [--ndf NDF] [--niter NITER] [--lr LR]
2626
[--beta1 BETA1] [--cuda] [--ngpu NGPU] [--netG NETG]
27-
[--netD NETD] [--mps]
27+
[--netD NETD]
2828
2929
optional arguments:
3030
-h, --help show this help message and exit
@@ -40,7 +40,6 @@ optional arguments:
4040
--lr LR learning rate, default=0.0002
4141
--beta1 BETA1 beta1 for adam. default=0.5
4242
--cuda enables cuda
43-
--mps enables macOS GPU
4443
--ngpu NGPU number of GPUs to use
4544
--netG NETG path to netG (to continue training)
4645
--netD NETD path to netD (to continue training)

dcgan/main.py

+2-12
Original file line numberDiff line numberDiff line change
@@ -25,15 +25,14 @@
2525
parser.add_argument('--niter', type=int, default=25, help='number of epochs to train for')
2626
parser.add_argument('--lr', type=float, default=0.0002, help='learning rate, default=0.0002')
2727
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5')
28-
parser.add_argument('--cuda', action='store_true', default=False, help='enables cuda')
28+
parser.add_argument('--cuda', action='store_true', help='enables cuda')
2929
parser.add_argument('--dry-run', action='store_true', help='check a single training cycle works')
3030
parser.add_argument('--ngpu', type=int, default=1, help='number of GPUs to use')
3131
parser.add_argument('--netG', default='', help="path to netG (to continue training)")
3232
parser.add_argument('--netD', default='', help="path to netD (to continue training)")
3333
parser.add_argument('--outf', default='.', help='folder to output images and model checkpoints')
3434
parser.add_argument('--manualSeed', type=int, help='manual seed')
3535
parser.add_argument('--classes', default='bedroom', help='comma separated list of classes for the lsun data set')
36-
parser.add_argument('--mps', action='store_true', default=False, help='enables macOS GPU training')
3736

3837
opt = parser.parse_args()
3938
print(opt)
@@ -53,9 +52,6 @@
5352

5453
if torch.cuda.is_available() and not opt.cuda:
5554
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
56-
57-
if torch.backends.mps.is_available() and not opt.mps:
58-
print("WARNING: You have mps device, to enable macOS GPU run with --mps")
5955

6056
if opt.dataroot is None and str(opt.dataset).lower() != 'fake':
6157
raise ValueError("`dataroot` parameter is required for dataset \"%s\"" % opt.dataset)
@@ -107,13 +103,7 @@
107103
dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batchSize,
108104
shuffle=True, num_workers=int(opt.workers))
109105

110-
if opt.cuda:
111-
device = torch.device("cuda:0")
112-
elif opt.mps:
113-
device = torch.device("mps")
114-
else:
115-
device = torch.device("cpu")
116-
106+
device = torch.device("cuda:0" if opt.cuda else "cpu")
117107
ngpu = int(opt.ngpu)
118108
nz = int(opt.nz)
119109
ngf = int(opt.ngf)

fast_neural_style/README.md

-2
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,6 @@ python neural_style/neural_style.py eval --content-image </path/to/content/image
2727
- `--output-image`: path for saving the output image.
2828
- `--content-scale`: factor for scaling down the content image if memory is an issue (eg: value of 2 will halve the height and width of content-image)
2929
- `--cuda`: set it to 1 for running on GPU, 0 for CPU.
30-
- `--mps`: set it to 1 for running on macOS GPU
3130

3231
Train model
3332

@@ -41,7 +40,6 @@ There are several command line arguments, the important ones are listed below
4140
- `--style-image`: path to style-image.
4241
- `--save-model-dir`: path to folder where trained model will be saved.
4342
- `--cuda`: set it to 1 for running on GPU, 0 for CPU.
44-
- `--mps`: set it to 1 for running on macOS GPU
4543

4644
Refer to `neural_style/neural_style.py` for other command line arguments. For training new models you might have to tune the values of `--content-weight` and `--style-weight`. The mosaic style model shown above was trained with `--content-weight 1e5` and `--style-weight 1e10`. The remaining 3 models were also trained with similar order of weight parameters with slight variation in the `--style-weight` (`5e10` or `1e11`).
4745

fast_neural_style/neural_style/neural_style.py

+3-11
Original file line numberDiff line numberDiff line change
@@ -29,12 +29,7 @@ def check_paths(args):
2929

3030

3131
def train(args):
32-
if args.cuda:
33-
device = torch.device("cuda")
34-
elif args.mps:
35-
device = torch.device("mps")
36-
else:
37-
device = torch.device("cpu")
32+
device = torch.device("cuda" if args.cuda else "cpu")
3833

3934
np.random.seed(args.seed)
4035
torch.manual_seed(args.seed)
@@ -229,11 +224,10 @@ def main():
229224
help="path for saving the output image")
230225
eval_arg_parser.add_argument("--model", type=str, required=True,
231226
help="saved model to be used for stylizing the image. If file ends in .pth - PyTorch path is used, if in .onnx - Caffe2 path")
232-
eval_arg_parser.add_argument("--cuda", type=int, default=False,
233-
help="set it to 1 for running on cuda, 0 for CPU")
227+
eval_arg_parser.add_argument("--cuda", type=int, required=True,
228+
help="set it to 1 for running on GPU, 0 for CPU")
234229
eval_arg_parser.add_argument("--export_onnx", type=str,
235230
help="export ONNX model to a given file")
236-
eval_arg_parser.add_argument('--mps', action='store_true', default=False, help='enable macOS GPU training')
237231

238232
args = main_arg_parser.parse_args()
239233

@@ -243,8 +237,6 @@ def main():
243237
if args.cuda and not torch.cuda.is_available():
244238
print("ERROR: cuda is not available, try running on CPU")
245239
sys.exit(1)
246-
if not args.mps and torch.backends.mps.is_available():
247-
print("WARNING: mps is available, run with --mps to enable macOS GPU")
248240

249241
if args.subcommand == "train":
250242
check_paths(args)

imagenet/main.py

+23-50
Original file line numberDiff line numberDiff line change
@@ -104,10 +104,7 @@ def main():
104104

105105
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
106106

107-
if torch.cuda.is_available():
108-
ngpus_per_node = torch.cuda.device_count()
109-
else:
110-
ngpus_per_node = 1
107+
ngpus_per_node = torch.cuda.device_count()
111108
if args.multiprocessing_distributed:
112109
# Since we have ngpus_per_node processes per node, the total world_size
113110
# needs to be adjusted accordingly
@@ -144,33 +141,29 @@ def main_worker(gpu, ngpus_per_node, args):
144141
print("=> creating model '{}'".format(args.arch))
145142
model = models.__dict__[args.arch]()
146143

147-
if not torch.cuda.is_available() and not torch.backends.mps.is_available():
144+
if not torch.cuda.is_available():
148145
print('using CPU, this will be slow')
149146
elif args.distributed:
150147
# For multiprocessing distributed, DistributedDataParallel constructor
151148
# should always set the single device scope, otherwise,
152149
# DistributedDataParallel will use all available devices.
153-
if torch.cuda.is_available():
154-
if args.gpu is not None:
155-
torch.cuda.set_device(args.gpu)
156-
model.cuda(args.gpu)
157-
# When using a single GPU per process and per
158-
# DistributedDataParallel, we need to divide the batch size
159-
# ourselves based on the total number of GPUs of the current node.
160-
args.batch_size = int(args.batch_size / ngpus_per_node)
161-
args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
162-
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
163-
else:
164-
model.cuda()
165-
# DistributedDataParallel will divide and allocate batch_size to all
166-
# available GPUs if device_ids are not set
167-
model = torch.nn.parallel.DistributedDataParallel(model)
168-
elif args.gpu is not None and torch.cuda.is_available():
150+
if args.gpu is not None:
151+
torch.cuda.set_device(args.gpu)
152+
model.cuda(args.gpu)
153+
# When using a single GPU per process and per
154+
# DistributedDataParallel, we need to divide the batch size
155+
# ourselves based on the total number of GPUs of the current node.
156+
args.batch_size = int(args.batch_size / ngpus_per_node)
157+
args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
158+
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
159+
else:
160+
model.cuda()
161+
# DistributedDataParallel will divide and allocate batch_size to all
162+
# available GPUs if device_ids are not set
163+
model = torch.nn.parallel.DistributedDataParallel(model)
164+
elif args.gpu is not None:
169165
torch.cuda.set_device(args.gpu)
170166
model = model.cuda(args.gpu)
171-
elif torch.backends.mps.is_available():
172-
device = torch.device("mps")
173-
model = model.to(device)
174167
else:
175168
# DataParallel will divide and allocate batch_size to all available GPUs
176169
if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
@@ -179,17 +172,8 @@ def main_worker(gpu, ngpus_per_node, args):
179172
else:
180173
model = torch.nn.DataParallel(model).cuda()
181174

182-
if torch.cuda.is_available():
183-
if args.gpu:
184-
device = torch.device('cuda:{}'.format(args.gpu))
185-
else:
186-
device = torch.device("cuda")
187-
elif torch.backends.mps.is_available():
188-
device = torch.device("mps")
189-
else:
190-
device = torch.device("cpu")
191175
# define loss function (criterion), optimizer, and learning rate scheduler
192-
criterion = nn.CrossEntropyLoss().to(device)
176+
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
193177

194178
optimizer = torch.optim.SGD(model.parameters(), args.lr,
195179
momentum=args.momentum,
@@ -204,7 +188,7 @@ def main_worker(gpu, ngpus_per_node, args):
204188
print("=> loading checkpoint '{}'".format(args.resume))
205189
if args.gpu is None:
206190
checkpoint = torch.load(args.resume)
207-
elif torch.cuda.is_available():
191+
else:
208192
# Map model to be loaded to specified single gpu.
209193
loc = 'cuda:{}'.format(args.gpu)
210194
checkpoint = torch.load(args.resume, map_location=loc)
@@ -318,13 +302,10 @@ def train(train_loader, model, criterion, optimizer, epoch, args):
318302
# measure data loading time
319303
data_time.update(time.time() - end)
320304

321-
if args.gpu is not None and torch.cuda.is_available():
305+
if args.gpu is not None:
322306
images = images.cuda(args.gpu, non_blocking=True)
323-
elif not args.gpu and torch.cuda.is_available():
307+
if torch.cuda.is_available():
324308
target = target.cuda(args.gpu, non_blocking=True)
325-
elif torch.backends.mps.is_available():
326-
images = images.to('mps')
327-
target = target.to('mps')
328309

329310
# compute output
330311
output = model(images)
@@ -356,11 +337,8 @@ def run_validate(loader, base_progress=0):
356337
end = time.time()
357338
for i, (images, target) in enumerate(loader):
358339
i = base_progress + i
359-
if args.gpu is not None and torch.cuda.is_available():
340+
if args.gpu is not None:
360341
images = images.cuda(args.gpu, non_blocking=True)
361-
if torch.backends.mps.is_available():
362-
images = images.to('mps')
363-
target = target.to('mps')
364342
if torch.cuda.is_available():
365343
target = target.cuda(args.gpu, non_blocking=True)
366344

@@ -443,12 +421,7 @@ def update(self, val, n=1):
443421
self.avg = self.sum / self.count
444422

445423
def all_reduce(self):
446-
if torch.cuda.is_available():
447-
device = torch.device("cuda")
448-
elif torch.backends.mps.is_available():
449-
device = torch.device("mps")
450-
else:
451-
device = torch.device("cpu")
424+
device = "cuda" if torch.cuda.is_available() else "cpu"
452425
total = torch.tensor([self.sum, self.count], dtype=torch.float32, device=device)
453426
dist.all_reduce(total, dist.ReduceOp.SUM, async_op=False)
454427
self.sum, self.count = total.tolist()

legacy/snli/train.py

-2
Original file line numberDiff line numberDiff line change
@@ -17,8 +17,6 @@
1717
if torch.cuda.is_available():
1818
torch.cuda.set_device(args.gpu)
1919
device = torch.device('cuda:{}'.format(args.gpu))
20-
elif torch.backends.mps.is_available():
21-
device = torch.device('mps')
2220
else:
2321
device = torch.device('cpu')
2422

mnist/main.py

+1-9
Original file line numberDiff line numberDiff line change
@@ -85,8 +85,6 @@ def main():
8585
help='Learning rate step gamma (default: 0.7)')
8686
parser.add_argument('--no-cuda', action='store_true', default=False,
8787
help='disables CUDA training')
88-
parser.add_argument('--no-mps', action='store_true', default=False,
89-
help='disables macOS GPU training')
9088
parser.add_argument('--dry-run', action='store_true', default=False,
9189
help='quickly check a single pass')
9290
parser.add_argument('--seed', type=int, default=1, metavar='S',
@@ -97,16 +95,10 @@ def main():
9795
help='For Saving the current Model')
9896
args = parser.parse_args()
9997
use_cuda = not args.no_cuda and torch.cuda.is_available()
100-
use_mps = not args.no_mps and torch.backends.mps.is_available()
10198

10299
torch.manual_seed(args.seed)
103100

104-
if use_cuda:
105-
device = torch.device("cuda")
106-
elif use_mps:
107-
device = torch.device("mps")
108-
else:
109-
device = torch.device("cpu")
101+
device = torch.device("cuda" if use_cuda else "cpu")
110102

111103
train_kwargs = {'batch_size': args.batch_size}
112104
test_kwargs = {'batch_size': args.test_batch_size}

mnist_hogwild/main.py

+1-10
Original file line numberDiff line numberDiff line change
@@ -29,8 +29,6 @@
2929
help='how many training processes to use (default: 2)')
3030
parser.add_argument('--cuda', action='store_true', default=False,
3131
help='enables CUDA training')
32-
parser.add_argument('--mps', action='store_true', default=False,
33-
help='enables macOS GPU training')
3432
parser.add_argument('--dry-run', action='store_true', default=False,
3533
help='quickly check a single pass')
3634

@@ -57,14 +55,7 @@ def forward(self, x):
5755
args = parser.parse_args()
5856

5957
use_cuda = args.cuda and torch.cuda.is_available()
60-
use_mps = args.mps and torch.backends.mps.is_available()
61-
if use_cuda:
62-
device = torch.device("cuda")
63-
elif use_mps:
64-
device = torch.device("mps")
65-
else:
66-
device = torch.device("cpu")
67-
58+
device = torch.device("cuda" if use_cuda else "cpu")
6859
transform=transforms.Compose([
6960
transforms.ToTensor(),
7061
transforms.Normalize((0.1307,), (0.3081,))

run_python_examples.sh

+5-5
Original file line numberDiff line numberDiff line change
@@ -56,7 +56,7 @@ function start() {
5656

5757
function dcgan() {
5858
start
59-
python main.py --dataset fake $CUDA_FLAG --mps --dry-run || error "dcgan failed"
59+
python main.py --dataset fake $CUDA_FLAG --dry-run || error "dcgan failed"
6060
}
6161

6262
function distributed() {
@@ -74,15 +74,15 @@ function fast_neural_style() {
7474
test -d "saved_models" || { error "saved models not found"; return; }
7575

7676
echo "running fast neural style model"
77-
python neural_style/neural_style.py eval --content-image images/content-images/amber.jpg --model saved_models/candy.pth --output-image images/output-images/amber-candy.jpg --cuda $CUDA --mps || error "neural_style.py failed"
77+
python neural_style/neural_style.py eval --content-image images/content-images/amber.jpg --model saved_models/candy.pth --output-image images/output-images/amber-candy.jpg --cuda $CUDA || error "neural_style.py failed"
7878
}
7979

8080
function imagenet() {
8181
start
8282
if [[ ! -d "sample/val" || ! -d "sample/train" ]]; then
8383
mkdir -p sample/val/n
8484
mkdir -p sample/train/n
85-
curl -O "https://upload.wikimedia.org/wikipedia/commons/5/5a/Socks-clinton.jpg" || { error "couldn't download sample image for imagenet"; return; }
85+
wget "https://upload.wikimedia.org/wikipedia/commons/5/5a/Socks-clinton.jpg" || { error "couldn't download sample image for imagenet"; return; }
8686
mv Socks-clinton.jpg sample/train/n
8787
cp sample/train/n/* sample/val/n/
8888
fi
@@ -137,7 +137,7 @@ function fx() {
137137

138138
function super_resolution() {
139139
start
140-
python main.py --upscale_factor 3 --batchSize 4 --testBatchSize 100 --nEpochs 1 --lr 0.001 --mps || error "super resolution failed"
140+
python main.py --upscale_factor 3 --batchSize 4 --testBatchSize 100 --nEpochs 1 --lr 0.001 || error "super resolution failed"
141141
}
142142

143143
function time_sequence_prediction() {
@@ -153,7 +153,7 @@ function vae() {
153153

154154
function word_language_model() {
155155
start
156-
python main.py --epochs 1 --dry-run $CUDA_FLAG --mps || error "word_language_model failed"
156+
python main.py --epochs 1 --dry-run $CUDA_FLAG || error "word_language_model failed"
157157
}
158158

159159
function clean() {

siamese_network/main.py

+1-9
Original file line numberDiff line numberDiff line change
@@ -249,8 +249,6 @@ def main():
249249
help='Learning rate step gamma (default: 0.7)')
250250
parser.add_argument('--no-cuda', action='store_true', default=False,
251251
help='disables CUDA training')
252-
parser.add_argument('--no-mps', action='store_true', default=False,
253-
help='disables macOS GPU training')
254252
parser.add_argument('--dry-run', action='store_true', default=False,
255253
help='quickly check a single pass')
256254
parser.add_argument('--seed', type=int, default=1, metavar='S',
@@ -262,16 +260,10 @@ def main():
262260
args = parser.parse_args()
263261

264262
use_cuda = not args.no_cuda and torch.cuda.is_available()
265-
use_mps = not args.no_mps and torch.backends.mps.is_available()
266263

267264
torch.manual_seed(args.seed)
268265

269-
if use_cuda:
270-
device = torch.device("cuda")
271-
elif use_mps:
272-
device = torch.device("mps")
273-
else:
274-
device = torch.device("cpu")
266+
device = torch.device("cuda" if use_cuda else "cpu")
275267

276268
train_kwargs = {'batch_size': args.batch_size}
277269
test_kwargs = {'batch_size': args.test_batch_size}

super_resolution/README.md

-1
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,6 @@ optional arguments:
1717
--nEpochs number of epochs to train for
1818
--lr Learning Rate. Default=0.01
1919
--cuda use cuda
20-
--mps enable GPU on macOS
2120
--threads number of threads for data loader to use Default=4
2221
--seed random seed to use. Default=123
2322
```

0 commit comments

Comments
 (0)