-
Notifications
You must be signed in to change notification settings - Fork 526
/
Copy pathedge_program_converter.py
194 lines (165 loc) · 7.8 KB
/
edge_program_converter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# Copyright 2024 NXP
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import executorch.backends.nxp.backend.ir.logger as logger
import flatbuffers
from executorch.backends.nxp.backend.ir.conversion_config import ConversionConfig
from executorch.backends.nxp.backend.ir.conversion_context import ConversionContext
from executorch.backends.nxp.backend.ir.converter.builder.aten_model_builder_director import (
AtenModelBuilderDirector,
)
from torch.export import ExportedProgram
from torch.export.graph_signature import InputKind
from torch.fx import Node
from torch.nn.parameter import Parameter
from executorch.backends.nxp.backend.ir.converter.node_converters.ops_converters import * # noqa F403
from executorch.backends.nxp.backend.node_format_inference import (
NodeFormat,
NodeFormatInference,
)
from executorch.exir.dialects._ops import ops as exir_ops
# noinspection PyProtectedMember
functions_converters = {
exir_ops.edge.aten.addmm.default: AddMMConverter, # noqa F405
exir_ops.edge.aten.avg_pool2d.default: AvgPool2dConverter, # noqa F405
exir_ops.edge.aten.constant_pad_nd.default: ConstantPadNDConverter, # noqa F405
exir_ops.edge.aten.convolution.default: ConvolutionConverter, # noqa F405
exir_ops.edge.aten.max_pool2d.default: MaxPool2dConverter, # noqa F405
exir_ops.edge.aten.mm.default: MMConverter, # noqa F405
exir_ops.edge.aten.permute_copy.default: PermuteCopyConverter, # noqa F405
exir_ops.edge.aten.relu.default: ReLUConverter, # noqa F405
exir_ops.edge.aten._softmax.default: SoftmaxConverter, # noqa F405
exir_ops.edge.aten.view_copy.default: ViewCopyConverter, # noqa F405
}
class EdgeProgramToIRConverter:
"""
Converter from convertion of ExportedProgram in Edge dialect to IR (TFLite Flatbuffers).
"""
_default_conversion_config = ConversionConfig()
def convert_program(
self,
edge_program: ExportedProgram,
conversion_config=_default_conversion_config,
) -> (bytes, dict):
"""
Convert ExportedProgram in Edge dialect to IR (TFLite flatbuffers) as bytes.
:param edge_program: Converter ExportedProgram.
:param conversion_config: ConversionConfig instance.
:return: TFLite flatbuffers as bytes.
"""
node_formats = NodeFormatInference(edge_program).identify_node_formats()
parameters_mapping = self.map_inputs_to_parameters(edge_program)
cc = self.build_conversion_context(
parameters_mapping, node_formats, conversion_config
)
# Program conversion
self.append_placeholders_and_tensors(edge_program.graph.nodes, cc)
self._convert_qdq_cluster_q_dq_nodes(edge_program.graph.nodes, cc)
self._process_nodes(edge_program.graph.nodes, cc)
# Assign output
io_formats = cc.tflite_builder.assign_model_io_to_subgraph_and_get_io_formats(
edge_program.graph_signature
)
# TFLite model generation
internal_tflite_model = cc.tflite_builder.finish()
flatbuffers_builder = flatbuffers.Builder()
internal_tflite_model.gen_tflite(flatbuffers_builder)
return bytes(flatbuffers_builder.Output()), io_formats
@staticmethod
def append_placeholders_and_tensors(nodes: list[Node], context: ConversionContext):
for node in nodes:
if node.op == "placeholder":
node_format = context.node_formats[node]
if node.name in context.parameters_mapping:
# Node is placeholder and has data -> append as static tensor with data
tensor = context.parameters_mapping[node.name]
context.tflite_builder.append_as_static_tensor(
node, node_format, tensor
)
else:
# Node is placeholder and doesn't have data (user input) -> append as fake tensor
context.tflite_builder.append_as_fake_tensor(node, node_format)
elif node.op == "call_function":
# Node is call function -> append only output as a tensor
node_format = context.node_formats[node]
context.tflite_builder.append_as_fake_tensor(node, node_format)
elif node.op == "output":
# Nothing to do
pass
else:
logger.e(
logger.Code.INTERNAL_ERROR, f"Unexpected node op type: '{node.op}'!"
)
def _process_nodes(self, nodes: list[Node], conversion_context: ConversionContext):
"""
Go through program nodes and append their TFLite siblings into ModelBuilder.
:param nodes: Program's nodes.
:param conversion_context: ConversionContext instance.
"""
qdq_related_functions = [
exir_ops.edge.quantized_decomposed.dequantize_per_tensor.default,
exir_ops.edge.quantized_decomposed.quantize_per_tensor.default,
]
for node in nodes:
if node.op == "call_function":
if node.target in qdq_related_functions and "cluster" in node.meta:
# Skip (De)Quantize nodes that were already processed
pass
elif node.target in functions_converters:
functions_converters[node.target](conversion_context).convert(node)
else:
logger.e(
logger.Code.NOT_IMPLEMENTED,
f"Converter for '{node.target.__name__}' not implemented!",
)
@staticmethod
def map_inputs_to_parameters(edge_program: ExportedProgram) -> dict[str, Parameter]:
"""
Create mapping between program parameters (input nodes & static data nodes) and their names.
:param edge_program: EdgeProgram instance.
:return: Mapping from parameter name to parameter instance.
"""
result_map = {}
for input_spec in edge_program.graph_signature.input_specs:
if input_spec.kind in [InputKind.PARAMETER, InputKind.BUFFER]:
result_map[input_spec.arg.name] = edge_program.state_dict[
input_spec.target
]
return result_map
@staticmethod
def build_conversion_context(
parameters_mapping: dict,
node_formats: dict[Node, NodeFormat],
conversion_config: ConversionConfig = _default_conversion_config,
) -> ConversionContext:
tflite_builder = AtenModelBuilderDirector(
3, "TFLite from EdgeProgram", conversion_config
)
# Add "sentinel" buffer (defined in schema.fbs)
tflite_builder.build_empty_buffer()
context = ConversionContext(
tflite_builder, conversion_config, parameters_mapping, node_formats
)
return context
def _convert_qdq_cluster_q_dq_nodes(
self, nodes: list[Node], conversion_context: ConversionContext
):
"""
Go through program and convert De(Quantize) nodes that are part of the QDQ cluster into
tensors.
:param nodes: Program's nodes.
:param conversion_context: ConversionContext instance.
"""
qdq_q_ops_converters = {
exir_ops.edge.quantized_decomposed.dequantize_per_tensor.default: QDQDequantizeConverter, # noqa F405
exir_ops.edge.quantized_decomposed.quantize_per_tensor.default: QDQQuantizeConverter, # noqa F405
}
for node in nodes:
part_of_qdq_cluster = "cluster" in node.meta
if (
node.op == "call_function"
and node.target in qdq_q_ops_converters
and part_of_qdq_cluster
):
qdq_q_ops_converters[node.target](conversion_context).convert(node)