@@ -41,13 +41,11 @@ static constexpr auto kUseSDPAWithKVCache = "use_sdpa_with_kv_cache";
41
41
Runner::Runner (
42
42
const std::string& model_path,
43
43
const std::string& tokenizer_path,
44
- const float temperature,
45
44
std::optional<const std::string> data_path)
46
45
// NOTE: we observed ~2x loading performance increase on iPhone 15
47
46
// and a ~5% improvement on Galaxy S22 by switching to
48
47
// FileDataLoader instead of MmapDataLoader + UseMlockIgnoreErrors.
49
- : temperature_(temperature),
50
- tokenizer_path_ (tokenizer_path),
48
+ : tokenizer_path_(tokenizer_path),
51
49
metadata_ ({
52
50
{kEnableDynamicShape , false },
53
51
{kMaxSeqLen , 128 },
@@ -133,11 +131,9 @@ Error Runner::load() {
133
131
ET_LOG (Info, " eos_id = %" PRId64, value);
134
132
}
135
133
}
134
+ // @lint-ignore CLANGTIDY facebook-hte-Deprecated
136
135
text_decoder_runner_ = std::make_unique<llm::TextDecoderRunner>(
137
- module_.get (),
138
- metadata_.at (kUseKVCache ),
139
- metadata_.at (kVocabSize ),
140
- temperature_);
136
+ module_.get (), metadata_.at (kUseKVCache ));
141
137
text_prefiller_ = std::make_unique<llm::TextPrefiller>(
142
138
text_decoder_runner_.get (),
143
139
metadata_.at (kUseKVCache ),
@@ -164,11 +160,9 @@ Error Runner::load() {
164
160
165
161
Error Runner::generate (
166
162
const std::string& prompt,
167
- int32_t seq_len ,
163
+ const ::executorch::extension::llm::GenerationConfig& config ,
168
164
std::function<void (const std::string&)> token_callback,
169
- std::function<void(const llm::Stats&)> stats_callback,
170
- bool echo,
171
- bool warmup) {
165
+ std::function<void(const llm::Stats&)> stats_callback) {
172
166
// Prepare the inputs.
173
167
// Use ones-initialized inputs.
174
168
ET_CHECK_MSG (!prompt.empty (), " Prompt cannot be null" );
@@ -178,19 +172,19 @@ Error Runner::generate(
178
172
stats_.model_load_end_ms = llm::time_in_ms ();
179
173
}
180
174
181
- if (warmup ) {
175
+ if (config. warming ) {
182
176
ET_LOG (Info, " Doing a warmup run..." );
183
177
}
184
178
185
179
RUNNER_ET_LOG (
186
- warmup ,
180
+ config. warming ,
187
181
" RSS after loading model: %f MiB (0 if unsupported)" ,
188
182
llm::get_rss_bytes () / 1024.0 / 1024.0 );
189
183
190
184
// Wrap the token_callback with print function
191
185
std::function<void (const std::string&)> wrapped_callback =
192
- [token_callback, warmup ](const std::string& piece) {
193
- if (!warmup ) {
186
+ [token_callback, config ](const std::string& piece) {
187
+ if (!config. warming ) {
194
188
llm::safe_printf (piece.c_str ());
195
189
fflush (stdout);
196
190
}
@@ -204,11 +198,6 @@ Error Runner::generate(
204
198
stats_.inference_start_ms = llm::time_in_ms ();
205
199
shouldStop_ = false ;
206
200
207
- // Set the sequence length to the max seq length if not provided
208
- seq_len = (seq_len > 0 && seq_len <= metadata_.at (kMaxContextLen ))
209
- ? seq_len
210
- : metadata_.at (kMaxContextLen );
211
-
212
201
::tokenizers::Result<std::vector<uint64_t >> encode_res = tokenizer_->encode (
213
202
prompt,
214
203
/* bos */ 0 ,
@@ -225,21 +214,22 @@ Error Runner::generate(
225
214
ET_CHECK_MSG (
226
215
num_prompt_tokens < metadata_.at (kMaxContextLen ),
227
216
" num_prompt_tokens %d >= max_seq_len_ %" PRId64
228
- " , Max seq length exceeded - please increase max seq len value in .../llama2/model.py " ,
217
+ " , Max seq length exceeded - please increase max seq len value in your export script " ,
229
218
num_prompt_tokens,
230
219
metadata_.at (kMaxContextLen ));
231
- ET_CHECK_MSG (
232
- num_prompt_tokens < seq_len,
233
- " num_prompt_tokens %d >= seq_len %d, Sequence length exceeded - please increase the seq_len value passed to generate()" ,
234
- num_prompt_tokens,
235
- seq_len);
220
+
221
+ // Determine max_new_tokens using the GenerationConfig's resolve method
222
+ int max_new_tokens = config.resolve_max_new_tokens (
223
+ metadata_.at (kMaxContextLen ), num_prompt_tokens);
224
+
225
+ ET_LOG (Info, " Max new tokens resolved: %d" , max_new_tokens);
236
226
237
227
// Prefill first
238
228
// Here feed all tokens to the model and get the next predicted token
239
229
// after the prompt. After that we will enter generate loop.
240
230
241
231
// print prompts
242
- if (echo) {
232
+ if (config. echo ) {
243
233
wrapped_callback (prompt);
244
234
}
245
235
int64_t pos = 0 ;
@@ -253,32 +243,38 @@ Error Runner::generate(
253
243
wrapped_callback (
254
244
ET_UNWRAP_TOKENIZER (tokenizer_->decode (cur_token, cur_token)));
255
245
RUNNER_ET_LOG (
256
- warmup ,
246
+ config. warming ,
257
247
" RSS after prompt prefill: %f MiB (0 if unsupported)" ,
258
248
llm::get_rss_bytes () / 1024.0 / 1024.0 );
259
249
260
250
// start the main loop
261
251
prompt_tokens.push_back (cur_token);
252
+
253
+ // Generate max_new_tokens - 1 because prefill already generated 1 token.
262
254
int64_t num_generated_tokens = ET_UNWRAP (text_token_generator_->generate (
263
- prompt_tokens, num_prompt_tokens, seq_len, wrapped_callback));
255
+ prompt_tokens,
256
+ num_prompt_tokens,
257
+ max_new_tokens - 1 ,
258
+ config.temperature ,
259
+ wrapped_callback));
264
260
265
261
stats_.inference_end_ms = llm::time_in_ms ();
266
- if (!warmup ) {
262
+ if (!config. warming ) {
267
263
printf (" \n " );
268
264
}
269
265
RUNNER_ET_LOG (
270
- warmup ,
266
+ config. warming ,
271
267
" RSS after finishing text generation: %f MiB (0 if unsupported)" ,
272
268
llm::get_rss_bytes () / 1024.0 / 1024.0 );
273
269
274
- if (num_prompt_tokens + num_generated_tokens == seq_len ) {
275
- RUNNER_ET_LOG (warmup , " Sequence length ( %i tokens) reached!" , seq_len );
270
+ if (num_generated_tokens == max_new_tokens ) {
271
+ RUNNER_ET_LOG (config. warming , " Max new tokens %i reached!" , max_new_tokens );
276
272
}
277
273
278
274
stats_.num_prompt_tokens = num_prompt_tokens;
279
275
stats_.num_generated_tokens = num_generated_tokens;
280
276
281
- if (warmup ) {
277
+ if (config. warming ) {
282
278
ET_LOG (Info, " Warmup run finished!" );
283
279
} else {
284
280
// Do not print report during warmup
@@ -291,14 +287,15 @@ Error Runner::generate(
291
287
return Error::Ok;
292
288
}
293
289
294
- Error Runner::warmup (const std::string& prompt, int32_t seq_len) {
295
- Error err = generate (
296
- prompt,
297
- seq_len,
298
- /* token_callback=*/ nullptr ,
299
- /* stats_callbak=*/ nullptr ,
300
- /* echo=*/ false ,
301
- /* warmup=*/ true );
290
+ Error Runner::warmup (const std::string& prompt, int32_t max_new_tokens) {
291
+ // Create a GenerationConfig for warmup
292
+ llm::GenerationConfig config{
293
+ .echo = false , .max_new_tokens = max_new_tokens, .warming = true };
294
+
295
+ // Call generate with the warmup config
296
+ Error err = generate (prompt, config);
297
+
298
+ // Reset stats after warmup
302
299
stats_.reset ();
303
300
return err;
304
301
}
0 commit comments