You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Modifying DPLossFastGradientClipping to add support for generative tasks with ghost clipping (#722)
Summary:
Pull Request resolved: #722
Generative tasks for NLP output predictions of shape (B,T,C) i.e., (batch_size, sequence_length, vocab_size). To compute the cross-entropy loss in this case, usually the predictions are reshaped to (BxT, C) and targets to (BxT). This creates an issue with Ghost Clipping per sample loss computation as BxT is seen as the batch_size. In particular, the current implementation of Ghost Clipping results in loss_per_sample, coeff variables to have a shape of BxT and B respectively. This causes a shape mismatch error. This diff fixes that error by collapsing the loss_per_sample variable to shape B i.e., the loss across the sequence_length dim is averaged/summed.
Reviewed By: EnayatUllah
Differential Revision: D68047256
fbshipit-source-id: ad7614e2cdba59869d762d810a14b96b465ee513
0 commit comments