193
193
< div class ="pytorch-left-menu-search ">
194
194
195
195
< div class ="version ">
196
- < a href ='https://pytorch.org/docs/versions.html '> master (1.11.0a0+git42cf661 ) ▼</ a >
196
+ < a href ='https://pytorch.org/docs/versions.html '> master (1.11.0a0+gitaf95408 ) ▼</ a >
197
197
</ div >
198
198
199
199
@@ -640,7 +640,7 @@ <h1>Source code for torch._tensor</h1><div class="highlight"><pre>
640
640
< span class ="c1 "> # All strings are unicode in Python 3.</ span >
641
641
< span class ="k "> return</ span > < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> _tensor_str</ span > < span class ="o "> .</ span > < span class ="n "> _str</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> )</ span >
642
642
643
- < span class ="k "> def</ span > < span class ="nf "> backward</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> gradient</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span > < span class ="n "> retain_graph</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span > < span class ="n "> create_graph</ span > < span class ="o "> =</ span > < span class ="kc "> False</ span > < span class ="p "> ,</ span > < span class ="n "> inputs</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ):</ span >
643
+ < div class =" viewcode-block " id =" Tensor.backward " > < a class =" viewcode-back " href =" ../../generated/torch.Tensor.backward.html#torch.Tensor.backward " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> backward</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> gradient</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span > < span class ="n "> retain_graph</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span > < span class ="n "> create_graph</ span > < span class ="o "> =</ span > < span class ="kc "> False</ span > < span class ="p "> ,</ span > < span class ="n "> inputs</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ):</ span >
644
644
< span class ="sa "> r</ span > < span class ="sd "> """Computes the gradient of current tensor w.r.t. graph leaves.</ span >
645
645
646
646
< span class ="sd "> The graph is differentiated using the chain rule. If the tensor is</ span >
@@ -696,7 +696,7 @@ <h1>Source code for torch._tensor</h1><div class="highlight"><pre>
696
696
< span class ="n "> retain_graph</ span > < span class ="o "> =</ span > < span class ="n "> retain_graph</ span > < span class ="p "> ,</ span >
697
697
< span class ="n "> create_graph</ span > < span class ="o "> =</ span > < span class ="n "> create_graph</ span > < span class ="p "> ,</ span >
698
698
< span class ="n "> inputs</ span > < span class ="o "> =</ span > < span class ="n "> inputs</ span > < span class ="p "> )</ span >
699
- < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> autograd</ span > < span class ="o "> .</ span > < span class ="n "> backward</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> gradient</ span > < span class ="p "> ,</ span > < span class ="n "> retain_graph</ span > < span class ="p "> ,</ span > < span class ="n "> create_graph</ span > < span class ="p "> ,</ span > < span class ="n "> inputs</ span > < span class ="o "> =</ span > < span class ="n "> inputs</ span > < span class ="p "> )</ span >
699
+ < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> autograd</ span > < span class ="o "> .</ span > < span class ="n "> backward</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> gradient</ span > < span class ="p "> ,</ span > < span class ="n "> retain_graph</ span > < span class ="p "> ,</ span > < span class ="n "> create_graph</ span > < span class ="p "> ,</ span > < span class ="n "> inputs</ span > < span class ="o "> =</ span > < span class ="n "> inputs</ span > < span class ="p "> )</ span > </ div >
700
700
701
701
< span class ="k "> def</ span > < span class ="nf "> register_hook</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> hook</ span > < span class ="p "> ):</ span >
702
702
< span class ="sa "> r</ span > < span class ="sd "> """Registers a backward hook.</ span >
@@ -807,7 +807,7 @@ <h1>Source code for torch._tensor</h1><div class="highlight"><pre>
807
807
< span class ="k "> return</ span > < span class ="n "> handle_torch_function</ span > < span class ="p "> (</ span > < span class ="n "> Tensor</ span > < span class ="o "> .</ span > < span class ="n "> is_shared</ span > < span class ="p "> ,</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,),</ span > < span class ="bp "> self</ span > < span class ="p "> )</ span >
808
808
< span class ="k "> return</ span > < span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> storage</ span > < span class ="p "> ()</ span > < span class ="o "> .</ span > < span class ="n "> is_shared</ span > < span class ="p "> ()</ span > </ div >
809
809
810
- < div class =" viewcode-block " id =" Tensor.share_memory_ " > < a class =" viewcode-back " href =" ../../generated/torch.Tensor.share_memory_.html#torch.Tensor.share_memory_ " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> share_memory_</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ):</ span >
810
+ < span class ="k "> def</ span > < span class ="nf "> share_memory_</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ):</ span >
811
811
< span class ="sa "> r</ span > < span class ="sd "> """Moves the underlying storage to shared memory.</ span >
812
812
813
813
< span class ="sd "> This is a no-op if the underlying storage is already in shared memory</ span >
@@ -816,7 +816,7 @@ <h1>Source code for torch._tensor</h1><div class="highlight"><pre>
816
816
< span class ="k "> if</ span > < span class ="n "> has_torch_function_unary</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ):</ span >
817
817
< span class ="k "> return</ span > < span class ="n "> handle_torch_function</ span > < span class ="p "> (</ span > < span class ="n "> Tensor</ span > < span class ="o "> .</ span > < span class ="n "> share_memory_</ span > < span class ="p "> ,</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,),</ span > < span class ="bp "> self</ span > < span class ="p "> )</ span >
818
818
< span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> storage</ span > < span class ="p "> ()</ span > < span class ="o "> .</ span > < span class ="n "> share_memory_</ span > < span class ="p "> ()</ span >
819
- < span class ="k "> return</ span > < span class ="bp "> self</ span > </ div >
819
+ < span class ="k "> return</ span > < span class ="bp "> self</ span >
820
820
821
821
< span class ="k "> def</ span > < span class ="fm "> __reversed__</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ):</ span >
822
822
< span class ="sa "> r</ span > < span class ="sd "> """Reverses the tensor along dimension 0."""</ span >
@@ -845,7 +845,7 @@ <h1>Source code for torch._tensor</h1><div class="highlight"><pre>
845
845
< span class ="k "> else</ span > < span class ="p "> :</ span >
846
846
< span class ="k "> return</ span > < span class ="n "> LU</ span > < span class ="p "> ,</ span > < span class ="n "> pivots</ span >
847
847
848
- < div class =" viewcode-block " id =" Tensor.stft " > < a class =" viewcode-back " href =" ../../generated/torch.Tensor.stft.html#torch.Tensor.stft " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> stft</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> n_fft</ span > < span class ="p "> :</ span > < span class ="nb "> int</ span > < span class ="p "> ,</ span > < span class ="n "> hop_length</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="nb "> int</ span > < span class ="p "> ]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span >
848
+ < span class ="k "> def</ span > < span class ="nf "> stft</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> n_fft</ span > < span class ="p "> :</ span > < span class ="nb "> int</ span > < span class ="p "> ,</ span > < span class ="n "> hop_length</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="nb "> int</ span > < span class ="p "> ]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span >
849
849
< span class ="n "> win_length</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="nb "> int</ span > < span class ="p "> ]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span > < span class ="n "> window</ span > < span class ="p "> :</ span > < span class ="s1 "> 'Optional[Tensor]'</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span >
850
850
< span class ="n "> center</ span > < span class ="p "> :</ span > < span class ="nb "> bool</ span > < span class ="o "> =</ span > < span class ="kc "> True</ span > < span class ="p "> ,</ span > < span class ="n "> pad_mode</ span > < span class ="p "> :</ span > < span class ="nb "> str</ span > < span class ="o "> =</ span > < span class ="s1 "> 'reflect'</ span > < span class ="p "> ,</ span > < span class ="n "> normalized</ span > < span class ="p "> :</ span > < span class ="nb "> bool</ span > < span class ="o "> =</ span > < span class ="kc "> False</ span > < span class ="p "> ,</ span >
851
851
< span class ="n "> onesided</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="nb "> bool</ span > < span class ="p "> ]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span > < span class ="n "> return_complex</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="nb "> bool</ span > < span class ="p "> ]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ):</ span >
@@ -862,7 +862,7 @@ <h1>Source code for torch._tensor</h1><div class="highlight"><pre>
862
862
< span class ="n "> onesided</ span > < span class ="o "> =</ span > < span class ="n "> onesided</ span > < span class ="p "> ,</ span > < span class ="n "> return_complex</ span > < span class ="o "> =</ span > < span class ="n "> return_complex</ span >
863
863
< span class ="p "> )</ span >
864
864
< span class ="k "> return</ span > < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> stft</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> n_fft</ span > < span class ="p "> ,</ span > < span class ="n "> hop_length</ span > < span class ="p "> ,</ span > < span class ="n "> win_length</ span > < span class ="p "> ,</ span > < span class ="n "> window</ span > < span class ="p "> ,</ span > < span class ="n "> center</ span > < span class ="p "> ,</ span >
865
- < span class ="n "> pad_mode</ span > < span class ="p "> ,</ span > < span class ="n "> normalized</ span > < span class ="p "> ,</ span > < span class ="n "> onesided</ span > < span class ="p "> ,</ span > < span class ="n "> return_complex</ span > < span class ="o "> =</ span > < span class ="n "> return_complex</ span > < span class ="p "> )</ span > </ div >
865
+ < span class ="n "> pad_mode</ span > < span class ="p "> ,</ span > < span class ="n "> normalized</ span > < span class ="p "> ,</ span > < span class ="n "> onesided</ span > < span class ="p "> ,</ span > < span class ="n "> return_complex</ span > < span class ="o "> =</ span > < span class ="n "> return_complex</ span > < span class ="p "> )</ span >
866
866
867
867
< div class ="viewcode-block " id ="Tensor.istft "> < a class ="viewcode-back " href ="../../generated/torch.Tensor.istft.html#torch.Tensor.istft "> [docs]</ a > < span class ="k "> def</ span > < span class ="nf "> istft</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> n_fft</ span > < span class ="p "> :</ span > < span class ="nb "> int</ span > < span class ="p "> ,</ span > < span class ="n "> hop_length</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="nb "> int</ span > < span class ="p "> ]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span >
868
868
< span class ="n "> win_length</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="nb "> int</ span > < span class ="p "> ]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span > < span class ="n "> window</ span > < span class ="p "> :</ span > < span class ="s1 "> 'Optional[Tensor]'</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span >
@@ -893,7 +893,7 @@ <h1>Source code for torch._tensor</h1><div class="highlight"><pre>
893
893
< span class ="kn "> from</ span > < span class ="nn "> torch.autograd._functions</ span > < span class ="kn "> import</ span > < span class ="n "> Resize</ span >
894
894
< span class ="k "> return</ span > < span class ="n "> Resize</ span > < span class ="o "> .</ span > < span class ="n "> apply</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> tensor</ span > < span class ="o "> .</ span > < span class ="n "> size</ span > < span class ="p "> ())</ span >
895
895
896
- < div class =" viewcode-block " id =" Tensor.split " > < a class =" viewcode-back " href =" ../../generated/torch.Tensor.split.html#torch.Tensor.split " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> split</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> split_size</ span > < span class ="p "> ,</ span > < span class ="n "> dim</ span > < span class ="o "> =</ span > < span class ="mi "> 0</ span > < span class ="p "> ):</ span >
896
+ < span class ="k "> def</ span > < span class ="nf "> split</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> split_size</ span > < span class ="p "> ,</ span > < span class ="n "> dim</ span > < span class ="o "> =</ span > < span class ="mi "> 0</ span > < span class ="p "> ):</ span >
897
897
< span class ="sa "> r</ span > < span class ="sd "> """See :func:`torch.split`</ span >
898
898
< span class ="sd "> """</ span >
899
899
< span class ="k "> if</ span > < span class ="n "> has_torch_function_unary</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ):</ span >
@@ -907,7 +907,7 @@ <h1>Source code for torch._tensor</h1><div class="highlight"><pre>
907
907
< span class ="k "> except</ span > < span class ="ne "> ValueError</ span > < span class ="p "> :</ span >
908
908
< span class ="k "> return</ span > < span class ="nb "> super</ span > < span class ="p "> (</ span > < span class ="n "> Tensor</ span > < span class ="p "> ,</ span > < span class ="bp "> self</ span > < span class ="p "> )</ span > < span class ="o "> .</ span > < span class ="n "> split_with_sizes</ span > < span class ="p "> (</ span > < span class ="n "> split_size</ span > < span class ="p "> ,</ span > < span class ="n "> dim</ span > < span class ="p "> )</ span >
909
909
< span class ="k "> else</ span > < span class ="p "> :</ span >
910
- < span class ="k "> return</ span > < span class ="nb "> super</ span > < span class ="p "> (</ span > < span class ="n "> Tensor</ span > < span class ="p "> ,</ span > < span class ="bp "> self</ span > < span class ="p "> )</ span > < span class ="o "> .</ span > < span class ="n "> split_with_sizes</ span > < span class ="p "> (</ span > < span class ="n "> split_size</ span > < span class ="p "> ,</ span > < span class ="n "> dim</ span > < span class ="p "> )</ span > </ div >
910
+ < span class ="k "> return</ span > < span class ="nb "> super</ span > < span class ="p "> (</ span > < span class ="n "> Tensor</ span > < span class ="p "> ,</ span > < span class ="bp "> self</ span > < span class ="p "> )</ span > < span class ="o "> .</ span > < span class ="n "> split_with_sizes</ span > < span class ="p "> (</ span > < span class ="n "> split_size</ span > < span class ="p "> ,</ span > < span class ="n "> dim</ span > < span class ="p "> )</ span >
911
911
912
912
< span class ="k "> def</ span > < span class ="nf "> unique</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="nb "> sorted</ span > < span class ="o "> =</ span > < span class ="kc "> True</ span > < span class ="p "> ,</ span > < span class ="n "> return_inverse</ span > < span class ="o "> =</ span > < span class ="kc "> False</ span > < span class ="p "> ,</ span > < span class ="n "> return_counts</ span > < span class ="o "> =</ span > < span class ="kc "> False</ span > < span class ="p "> ,</ span > < span class ="n "> dim</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ):</ span >
913
913
< span class ="sa "> r</ span > < span class ="sd "> """Returns the unique elements of the input tensor.</ span >
0 commit comments