Skip to content

Commit e79f61c

Browse files
committed
[Feature,Example] Add MCTS algorithm and example
ghstack-source-id: 9ee7dc3 Pull Request resolved: #2796
1 parent a31dca3 commit e79f61c

File tree

5 files changed

+260
-2
lines changed

5 files changed

+260
-2
lines changed

examples/trees/mcts.py

+125
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,125 @@
1+
# Copyright (c) Meta Platforms, Inc. and affiliates.
2+
#
3+
# This source code is licensed under the MIT license found in the
4+
# LICENSE file in the root directory of this source tree.
5+
6+
import time
7+
8+
import torchrl
9+
import torchrl.envs
10+
import torchrl.modules.mcts
11+
from tensordict import TensorDict
12+
13+
start_time = time.time()
14+
15+
pgn_or_fen = "fen"
16+
mask_actions = True
17+
18+
env = torchrl.envs.ChessEnv(
19+
include_pgn=False,
20+
include_fen=True,
21+
include_hash=True,
22+
include_hash_inv=True,
23+
include_san=True,
24+
stateful=True,
25+
mask_actions=mask_actions,
26+
)
27+
28+
29+
class TransformReward:
30+
def __init__(self):
31+
self.first_turn = None
32+
33+
def __call__(self, td):
34+
if self.first_turn is None and "turn" in td:
35+
self.first_turn = td["turn"]
36+
print(f"first turn: {self.first_turn}")
37+
38+
if "reward" not in td:
39+
return td
40+
reward = td["reward"]
41+
if reward == 0.5:
42+
reward = 0
43+
# elif reward == 1 and td["turn"] == env.lib.WHITE:
44+
elif reward == 1 and td["turn"] == self.first_turn:
45+
reward = -reward
46+
47+
td["reward"] = reward
48+
return td
49+
50+
def reset(self, td):
51+
self.first_turn = None
52+
53+
54+
# ChessEnv sets the reward to 0.5 for a draw and 1 for a win for either player.
55+
# Need to transform the reward to be:
56+
# white win = 1
57+
# draw = 0
58+
# black win = -1
59+
env = env.append_transform(TransformReward())
60+
61+
forest = torchrl.data.MCTSForest()
62+
forest.reward_keys = env.reward_keys
63+
forest.done_keys = env.done_keys
64+
forest.action_keys = env.action_keys
65+
66+
if mask_actions:
67+
forest.observation_keys = [f"{pgn_or_fen}_hash", "turn", "action_mask"]
68+
else:
69+
forest.observation_keys = [f"{pgn_or_fen}_hash", "turn"]
70+
71+
72+
def tree_format_fn(tree):
73+
td = tree.rollout[-1]["next"]
74+
return [
75+
td["san"],
76+
td[pgn_or_fen].split("\n")[-1],
77+
tree.wins,
78+
tree.visits,
79+
]
80+
81+
82+
def get_best_move(fen, mcts_steps, rollout_steps):
83+
root = env.reset(TensorDict({"fen": fen}))
84+
tree = torchrl.modules.mcts.MCTS(forest, root, env, mcts_steps, rollout_steps)
85+
moves = []
86+
87+
for subtree in tree.subtree:
88+
san = subtree.rollout[0]["next", "san"]
89+
reward_sum = subtree.wins
90+
visits = subtree.visits
91+
value_avg = (reward_sum / visits).item()
92+
93+
if not subtree.rollout[0]["turn"]:
94+
value_avg = -value_avg
95+
96+
moves.append((value_avg, san))
97+
98+
moves = sorted(moves, key=lambda x: -x[0])
99+
100+
# print(tree.to_string(tree_format_fn))
101+
102+
print("------------------")
103+
for value_avg, san in moves:
104+
print(f" {value_avg:0.02f} {san}")
105+
print("------------------")
106+
107+
return moves[0][1]
108+
109+
110+
# White has M1, best move Rd8#. Any other moves lose to M2 or M1.
111+
fen0 = "7k/6pp/7p/7K/8/8/6q1/3R4 w - - 0 1"
112+
assert get_best_move(fen0, 100, 10) == "Rd8#"
113+
114+
# Black has M1, best move Qg6#. Other moves give rough equality or worse.
115+
fen1 = "6qk/2R4p/7K/8/8/8/8/4R3 b - - 1 1"
116+
assert get_best_move(fen1, 100, 10) == "Qg6#"
117+
118+
# White has M2, best move Rxg8+. Any other move loses.
119+
fen2 = "2R3qk/5p1p/7K/8/8/8/5r2/2R5 w - - 0 1"
120+
assert get_best_move(fen2, 1000, 10) == "Rxg8+"
121+
122+
end_time = time.time()
123+
total_time = end_time - start_time
124+
125+
print(f"Took {total_time} s")

torchrl/data/map/tree.py

+5
Original file line numberDiff line numberDiff line change
@@ -1363,6 +1363,11 @@ def valid_paths(cls, tree: Tree):
13631363
def __len__(self):
13641364
return len(self.data_map)
13651365

1366+
def __contains__(self, root: TensorDictBase):
1367+
if self.node_map is None:
1368+
return False
1369+
return root.select(*self.node_map.in_keys) in self.node_map
1370+
13661371
def to_string(self, td_root, node_format_fn=lambda tree: tree.node_data.to_dict()):
13671372
"""Generates a string representation of a tree in the forest.
13681373

torchrl/envs/custom/chess.py

+7-2
Original file line numberDiff line numberDiff line change
@@ -222,12 +222,15 @@ def lib(cls):
222222
return chess
223223

224224
_san_moves = []
225+
_san_move_to_index_map = {}
225226

226227
@_classproperty
227228
def san_moves(cls):
228229
if not cls._san_moves:
229230
with open(pathlib.Path(__file__).parent / "san_moves.txt", "r+") as f:
230231
cls._san_moves.extend(f.read().split("\n"))
232+
for idx, san_move in enumerate(cls._san_moves):
233+
cls._san_move_to_index_map[san_move] = idx
231234
return cls._san_moves
232235

233236
def _legal_moves_to_index(
@@ -255,7 +258,7 @@ def _legal_moves_to_index(
255258
board = self.board
256259

257260
indices = torch.tensor(
258-
[self._san_moves.index(board.san(m)) for m in board.legal_moves],
261+
[self._san_move_to_index_map[board.san(m)] for m in board.legal_moves],
259262
dtype=torch.int64,
260263
)
261264
mask = None
@@ -409,7 +412,9 @@ def _reset(self, tensordict=None):
409412
if move is None:
410413
dest.set("san", "<start>")
411414
else:
412-
dest.set("san", self.board.san(move))
415+
prev_board = self.board.copy()
416+
prev_board.pop()
417+
dest.set("san", prev_board.san(move))
413418
if self.include_fen:
414419
dest.set("fen", fen)
415420
if self.include_pgn:

torchrl/modules/mcts/__init__.py

+6
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,6 @@
1+
# Copyright (c) Meta Platforms, Inc. and affiliates.
2+
#
3+
# This source code is licensed under the MIT license found in the
4+
# LICENSE file in the root directory of this source tree.
5+
6+
from .mcts import MCTS

torchrl/modules/mcts/mcts.py

+117
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,117 @@
1+
# Copyright (c) Meta Platforms, Inc. and affiliates.
2+
#
3+
# This source code is licensed under the MIT license found in the
4+
# LICENSE file in the root directory of this source tree.
5+
6+
import torch
7+
import torchrl
8+
from tensordict import TensorDict, TensorDictBase
9+
10+
from torchrl.data.map import MCTSForest, Tree
11+
from torchrl.envs import EnvBase
12+
13+
C = 2.0**0.5
14+
15+
16+
# TODO: Allow user to specify different priority functions with PR #2358
17+
def _traversal_priority_UCB1(tree):
18+
subtree = tree.subtree
19+
visits = subtree.visits
20+
reward_sum = subtree.wins
21+
22+
# TODO: Remove this in favor of a reward transform in the example
23+
# If it's black's turn, flip the reward, since black wants to
24+
# optimize for the lowest reward, not highest.
25+
if not subtree.rollout[0, 0]["turn"]:
26+
reward_sum = -reward_sum
27+
28+
parent_visits = tree.visits
29+
reward_sum = reward_sum.squeeze(-1)
30+
priority = (reward_sum + C * torch.sqrt(torch.log(parent_visits))) / visits
31+
priority[visits == 0] = float("inf")
32+
return priority
33+
34+
35+
def _traverse_MCTS_one_step(forest, tree, env, max_rollout_steps):
36+
done = False
37+
trees_visited = [tree]
38+
39+
while not done:
40+
if tree.subtree is None:
41+
td_tree = tree.rollout[-1]["next"].clone()
42+
43+
if (tree.visits > 0 or tree.parent is None) and not td_tree["done"]:
44+
actions = env.all_actions(td_tree)
45+
subtrees = []
46+
47+
for action in actions:
48+
td = env.step(env.reset(td_tree).update(action))
49+
new_node = torchrl.data.Tree(
50+
rollout=td.unsqueeze(0),
51+
node_data=td["next"].select(*forest.node_map.in_keys),
52+
count=torch.tensor(0),
53+
wins=torch.zeros_like(td["next", env.reward_key]),
54+
)
55+
subtrees.append(new_node)
56+
57+
# NOTE: This whole script runs about 2x faster with lazy stack
58+
# versus eager stack.
59+
tree.subtree = TensorDict.lazy_stack(subtrees)
60+
chosen_idx = torch.randint(0, len(subtrees), ()).item()
61+
rollout_state = subtrees[chosen_idx].rollout[-1]["next"]
62+
63+
else:
64+
rollout_state = td_tree
65+
66+
if rollout_state["done"]:
67+
rollout_reward = rollout_state[env.reward_key]
68+
else:
69+
rollout = env.rollout(
70+
max_steps=max_rollout_steps,
71+
tensordict=rollout_state,
72+
)
73+
rollout_reward = rollout[-1]["next", env.reward_key]
74+
done = True
75+
76+
else:
77+
priorities = _traversal_priority_UCB1(tree)
78+
chosen_idx = torch.argmax(priorities).item()
79+
tree = tree.subtree[chosen_idx]
80+
trees_visited.append(tree)
81+
82+
for tree in trees_visited:
83+
tree.visits += 1
84+
tree.wins += rollout_reward
85+
86+
87+
def MCTS(
88+
forest: MCTSForest,
89+
root: TensorDictBase,
90+
env: EnvBase,
91+
num_steps: int,
92+
max_rollout_steps: int | None = None,
93+
) -> Tree:
94+
"""Performs Monte-Carlo tree search in an environment.
95+
96+
Args:
97+
forest (MCTSForest): Forest of the tree to update. If the tree does not
98+
exist yet, it is added.
99+
root (TensorDict): The root step of the tree to update.
100+
env (EnvBase): Environment to performs actions in.
101+
num_steps (int): Number of iterations to traverse.
102+
max_rollout_steps (int): Maximum number of steps for each rollout.
103+
"""
104+
if root not in forest:
105+
for action in env.all_actions(root):
106+
td = env.step(env.reset(root.clone()).update(action))
107+
forest.extend(td.unsqueeze(0))
108+
109+
tree = forest.get_tree(root)
110+
tree.wins = torch.zeros_like(td["next", env.reward_key])
111+
for subtree in tree.subtree:
112+
subtree.wins = torch.zeros_like(td["next", env.reward_key])
113+
114+
for _ in range(num_steps):
115+
_traverse_MCTS_one_step(forest, tree, env, max_rollout_steps)
116+
117+
return tree

0 commit comments

Comments
 (0)