Skip to content

Commit ed8e06e

Browse files
committed
[Feature,Example] Add MCTS algorithm and example
ghstack-source-id: cfaa730 Pull Request resolved: #2796
1 parent a31dca3 commit ed8e06e

File tree

5 files changed

+272
-2
lines changed

5 files changed

+272
-2
lines changed

examples/trees/mcts.py

+136
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,136 @@
1+
# Copyright (c) Meta Platforms, Inc. and affiliates.
2+
#
3+
# This source code is licensed under the MIT license found in the
4+
# LICENSE file in the root directory of this source tree.
5+
6+
import time
7+
8+
import torch
9+
import torchrl
10+
import torchrl.envs
11+
import torchrl.modules.mcts
12+
from tensordict import TensorDict
13+
14+
pgn_or_fen = "fen"
15+
mask_actions = True
16+
17+
env = torchrl.envs.ChessEnv(
18+
include_pgn=False,
19+
include_fen=True,
20+
include_hash=True,
21+
include_hash_inv=True,
22+
include_san=True,
23+
stateful=True,
24+
mask_actions=mask_actions,
25+
)
26+
27+
28+
class TransformReward:
29+
def __init__(self):
30+
self.first_turn = None
31+
32+
def reset(self, *args):
33+
self.first_turn = None
34+
35+
def __call__(self, td):
36+
if "reward" not in td:
37+
return td
38+
39+
reward = td["reward"]
40+
41+
if self.first_turn is None:
42+
self.first_turn = td["turn"]
43+
44+
if reward == 0.5:
45+
reward = 0
46+
elif reward == 1 and td["turn"]:
47+
reward = -reward
48+
49+
td["reward"] = reward
50+
return td
51+
52+
53+
# ChessEnv sets the reward to 0.5 for a draw and 1 for a win for either player.
54+
# Need to transform the reward to be:
55+
# white win = 1
56+
# draw = 0
57+
# black win = -1
58+
transform_reward = TransformReward()
59+
env = env.append_transform(transform_reward)
60+
61+
forest = torchrl.data.MCTSForest()
62+
forest.reward_keys = env.reward_keys
63+
forest.done_keys = env.done_keys
64+
forest.action_keys = env.action_keys
65+
66+
if mask_actions:
67+
forest.observation_keys = [f"{pgn_or_fen}_hash", "turn", "action_mask"]
68+
else:
69+
forest.observation_keys = [f"{pgn_or_fen}_hash", "turn"]
70+
71+
72+
def tree_format_fn(tree):
73+
td = tree.rollout[-1]["next"]
74+
return [
75+
td["san"],
76+
td[pgn_or_fen].split("\n")[-1],
77+
tree.wins,
78+
tree.visits,
79+
]
80+
81+
82+
def get_best_move(fen, mcts_steps, rollout_steps):
83+
transform_reward.reset()
84+
root = env.reset(TensorDict({"fen": fen}))
85+
tree = torchrl.modules.mcts.MCTS(forest, root, env, mcts_steps, rollout_steps)
86+
moves = []
87+
88+
for subtree in tree.subtree:
89+
san = subtree.rollout[0]["next", "san"]
90+
reward_sum = subtree.wins
91+
visits = subtree.visits
92+
value_avg = (reward_sum / visits).item()
93+
if not root["turn"]:
94+
value_avg = -value_avg
95+
moves.append((value_avg, san))
96+
97+
moves = sorted(moves, key=lambda x: -x[0])
98+
99+
# print(tree.to_string(tree_format_fn))
100+
101+
print("------------------")
102+
for value_avg, san in moves:
103+
print(f" {value_avg:0.02f} {san}")
104+
print("------------------")
105+
106+
return moves[0][1]
107+
108+
109+
for idx in range(3):
110+
print("==========")
111+
print(idx)
112+
print("==========")
113+
torch.manual_seed(idx)
114+
115+
start_time = time.time()
116+
117+
# White has M1, best move Rd8#. Any other moves lose to M2 or M1.
118+
fen0 = "7k/6pp/7p/7K/8/8/6q1/3R4 w - - 0 1"
119+
assert get_best_move(fen0, 40, 10) == "Rd8#"
120+
121+
# Black has M1, best move Qg6#. Other moves give rough equality or worse.
122+
fen1 = "6qk/2R4p/7K/8/8/8/8/4R3 b - - 1 1"
123+
assert get_best_move(fen1, 40, 10) == "Qg6#"
124+
125+
# White has M2, best move Rxg8+. Any other move loses.
126+
fen2 = "2R3qk/5p1p/7K/8/8/8/5r2/2R5 w - - 0 1"
127+
assert get_best_move(fen2, 600, 10) == "Rxg8+"
128+
129+
# Black has M2, best move Rxg1+. Any other move loses.
130+
fen3 = "2r5/5R2/8/8/8/7k/5P1P/2r3QK b - - 0 1"
131+
assert get_best_move(fen3, 600, 10) == "Rxg1+"
132+
133+
end_time = time.time()
134+
total_time = end_time - start_time
135+
136+
print(f"Took {total_time} s")

torchrl/data/map/tree.py

+5
Original file line numberDiff line numberDiff line change
@@ -1363,6 +1363,11 @@ def valid_paths(cls, tree: Tree):
13631363
def __len__(self):
13641364
return len(self.data_map)
13651365

1366+
def __contains__(self, root: TensorDictBase):
1367+
if self.node_map is None:
1368+
return False
1369+
return root.select(*self.node_map.in_keys) in self.node_map
1370+
13661371
def to_string(self, td_root, node_format_fn=lambda tree: tree.node_data.to_dict()):
13671372
"""Generates a string representation of a tree in the forest.
13681373

torchrl/envs/custom/chess.py

+7-2
Original file line numberDiff line numberDiff line change
@@ -222,12 +222,15 @@ def lib(cls):
222222
return chess
223223

224224
_san_moves = []
225+
_san_move_to_index_map = {}
225226

226227
@_classproperty
227228
def san_moves(cls):
228229
if not cls._san_moves:
229230
with open(pathlib.Path(__file__).parent / "san_moves.txt", "r+") as f:
230231
cls._san_moves.extend(f.read().split("\n"))
232+
for idx, san_move in enumerate(cls._san_moves):
233+
cls._san_move_to_index_map[san_move] = idx
231234
return cls._san_moves
232235

233236
def _legal_moves_to_index(
@@ -255,7 +258,7 @@ def _legal_moves_to_index(
255258
board = self.board
256259

257260
indices = torch.tensor(
258-
[self._san_moves.index(board.san(m)) for m in board.legal_moves],
261+
[self._san_move_to_index_map[board.san(m)] for m in board.legal_moves],
259262
dtype=torch.int64,
260263
)
261264
mask = None
@@ -409,7 +412,9 @@ def _reset(self, tensordict=None):
409412
if move is None:
410413
dest.set("san", "<start>")
411414
else:
412-
dest.set("san", self.board.san(move))
415+
prev_board = self.board.copy()
416+
prev_board.pop()
417+
dest.set("san", prev_board.san(move))
413418
if self.include_fen:
414419
dest.set("fen", fen)
415420
if self.include_pgn:

torchrl/modules/mcts/__init__.py

+6
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,6 @@
1+
# Copyright (c) Meta Platforms, Inc. and affiliates.
2+
#
3+
# This source code is licensed under the MIT license found in the
4+
# LICENSE file in the root directory of this source tree.
5+
6+
from .mcts import MCTS

torchrl/modules/mcts/mcts.py

+118
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,118 @@
1+
# Copyright (c) Meta Platforms, Inc. and affiliates.
2+
#
3+
# This source code is licensed under the MIT license found in the
4+
# LICENSE file in the root directory of this source tree.
5+
6+
import torch
7+
import torchrl
8+
from tensordict import TensorDict, TensorDictBase
9+
10+
from torchrl.data.map import MCTSForest, Tree
11+
from torchrl.envs import EnvBase
12+
13+
C = 2.0**0.5
14+
15+
16+
# TODO: Allow user to specify different priority functions with PR #2358
17+
def _traversal_priority_UCB1(tree):
18+
subtree = tree.subtree
19+
visits = subtree.visits
20+
reward_sum = subtree.wins
21+
22+
# If it's black's turn, flip the reward, since black wants to optimize for
23+
# the lowest reward, not highest.
24+
# TODO: Need a more generic way to do this, since not all use cases of MCTS
25+
# will be two player turn based games.
26+
if not subtree.rollout[0, 0]["turn"]:
27+
reward_sum = -reward_sum
28+
29+
parent_visits = tree.visits
30+
reward_sum = reward_sum.squeeze(-1)
31+
priority = (reward_sum + C * torch.sqrt(torch.log(parent_visits))) / visits
32+
priority[visits == 0] = float("inf")
33+
return priority
34+
35+
36+
def _traverse_MCTS_one_step(forest, tree, env, max_rollout_steps):
37+
done = False
38+
trees_visited = [tree]
39+
40+
while not done:
41+
if tree.subtree is None:
42+
td_tree = tree.rollout[-1]["next"].clone()
43+
44+
if (tree.visits > 0 or tree.parent is None) and not td_tree["done"]:
45+
actions = env.all_actions(td_tree)
46+
subtrees = []
47+
48+
for action in actions:
49+
td = env.step(env.reset(td_tree).update(action))
50+
new_node = torchrl.data.Tree(
51+
rollout=td.unsqueeze(0),
52+
node_data=td["next"].select(*forest.node_map.in_keys),
53+
count=torch.tensor(0),
54+
wins=torch.zeros_like(td["next", env.reward_key]),
55+
)
56+
subtrees.append(new_node)
57+
58+
# NOTE: This whole script runs about 2x faster with lazy stack
59+
# versus eager stack.
60+
tree.subtree = TensorDict.lazy_stack(subtrees)
61+
chosen_idx = torch.randint(0, len(subtrees), ()).item()
62+
rollout_state = subtrees[chosen_idx].rollout[-1]["next"]
63+
64+
else:
65+
rollout_state = td_tree
66+
67+
if rollout_state["done"]:
68+
rollout_reward = rollout_state[env.reward_key]
69+
else:
70+
rollout = env.rollout(
71+
max_steps=max_rollout_steps,
72+
tensordict=rollout_state,
73+
)
74+
rollout_reward = rollout[-1]["next", env.reward_key]
75+
done = True
76+
77+
else:
78+
priorities = _traversal_priority_UCB1(tree)
79+
chosen_idx = torch.argmax(priorities).item()
80+
tree = tree.subtree[chosen_idx]
81+
trees_visited.append(tree)
82+
83+
for tree in trees_visited:
84+
tree.visits += 1
85+
tree.wins += rollout_reward
86+
87+
88+
def MCTS(
89+
forest: MCTSForest,
90+
root: TensorDictBase,
91+
env: EnvBase,
92+
num_steps: int,
93+
max_rollout_steps: int | None = None,
94+
) -> Tree:
95+
"""Performs Monte-Carlo tree search in an environment.
96+
97+
Args:
98+
forest (MCTSForest): Forest of the tree to update. If the tree does not
99+
exist yet, it is added.
100+
root (TensorDict): The root step of the tree to update.
101+
env (EnvBase): Environment to performs actions in.
102+
num_steps (int): Number of iterations to traverse.
103+
max_rollout_steps (int): Maximum number of steps for each rollout.
104+
"""
105+
for action in env.all_actions(root):
106+
td = env.step(env.reset(root.clone()).update(action))
107+
forest.extend(td.unsqueeze(0))
108+
109+
tree = forest.get_tree(root)
110+
111+
tree.wins = torch.zeros_like(td["next", env.reward_key])
112+
for subtree in tree.subtree:
113+
subtree.wins = torch.zeros_like(td["next", env.reward_key])
114+
115+
for _ in range(num_steps):
116+
_traverse_MCTS_one_step(forest, tree, env, max_rollout_steps)
117+
118+
return tree

0 commit comments

Comments
 (0)