-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpredict.py
executable file
·56 lines (46 loc) · 1.56 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#!/usr/bin/env python3
import os
import sys
import numpy as np
import pandas as pd
from config import *
from evaluate import iou, yolo_non_max_suppression
from imageai.Detection.Custom import CustomObjectDetection
def load_model():
dtc = CustomObjectDetection()
dtc.setModelTypeAsYOLOv3()
dtc.setModelPath(MODEL_PATH)
dtc.setJsonPath(JSON_PATH)
dtc.loadModel()
return dtc
def predict(model, filename):
# find detections with ImageAI
returned_image, detections = model.detectObjectsFromImage(
input_image=filename,
output_type='array',
minimum_percentage_probability=70,
display_percentage_probability=True,
display_object_name=True,
nms_treshold=0.5)
# custom post-processing of detections
probs = np.array([d['percentage_probability'] for d in detections])
boxes = np.array([d['box_points'] for d in detections])
classes = np.array([d['name'] for d in detections])
if len(probs) > 0:
probs, boxes, classes = yolo_non_max_suppression(scores=probs, boxes=boxes, classes=classes)
# gather post-processed detections in single array
detections = []
for i in range(len(probs)):
detections.append({
'name': classes[i],
'percentage_probability': probs[i],
'box_points': boxes[i]
})
return detections
if __name__ == '__main__':
model = load_model()
for f in sys.argv[1:]:
detections = predict(model, f)
print('--', f)
for d in detections:
print(d)