32
32
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2" : np .array (
33
33
[0.0094 , 0.0184 , 0.0328 , 0.0072 , - 0.0351 ]
34
34
),
35
- "intfloat/multilingual-e5-large" : np .array (
36
- [0.0098 , 0.0045 , 0.0066 , - 0.0354 , 0.0070 ]
37
- ),
35
+ "intfloat/multilingual-e5-large" : np .array ([0.0098 , 0.0045 , 0.0066 , - 0.0354 , 0.0070 ]),
38
36
"sentence-transformers/paraphrase-multilingual-mpnet-base-v2" : np .array (
39
37
[- 0.01341097 , 0.0416553 , - 0.00480805 , 0.02844842 , 0.0505299 ]
40
38
),
41
- "jinaai/jina-embeddings-v2-small-en" : np .array (
42
- [- 0.0455 , - 0.0428 , - 0.0122 , 0.0613 , 0.0015 ]
43
- ),
44
- "jinaai/jina-embeddings-v2-base-en" : np .array (
45
- [- 0.0332 , - 0.0509 , 0.0287 , - 0.0043 , - 0.0077 ]
46
- ),
47
- "jinaai/jina-embeddings-v2-base-de" : np .array (
48
- [- 0.0085 , 0.0417 , 0.0342 , 0.0309 , - 0.0149 ]
49
- ),
50
- "jinaai/jina-embeddings-v2-base-code" : np .array (
51
- [0.0145 , - 0.0164 , 0.0136 , - 0.0170 , 0.0734 ]
52
- ),
53
- "nomic-ai/nomic-embed-text-v1" : np .array (
54
- [0.3708 , 0.2031 , - 0.3406 , - 0.2114 , - 0.3230 ]
55
- ),
39
+ "jinaai/jina-embeddings-v2-small-en" : np .array ([- 0.0455 , - 0.0428 , - 0.0122 , 0.0613 , 0.0015 ]),
40
+ "jinaai/jina-embeddings-v2-base-en" : np .array ([- 0.0332 , - 0.0509 , 0.0287 , - 0.0043 , - 0.0077 ]),
41
+ "jinaai/jina-embeddings-v2-base-de" : np .array ([- 0.0085 , 0.0417 , 0.0342 , 0.0309 , - 0.0149 ]),
42
+ "jinaai/jina-embeddings-v2-base-code" : np .array ([0.0145 , - 0.0164 , 0.0136 , - 0.0170 , 0.0734 ]),
43
+ "nomic-ai/nomic-embed-text-v1" : np .array ([0.3708 , 0.2031 , - 0.3406 , - 0.2114 , - 0.3230 ]),
56
44
"nomic-ai/nomic-embed-text-v1.5" : np .array (
57
45
[- 0.15407836 , - 0.03053198 , - 3.9138033 , 0.1910364 , 0.13224715 ]
58
46
),
59
47
"nomic-ai/nomic-embed-text-v1.5-Q" : np .array (
60
- [- 0.12525563 , 0.38030425 , - 3.961622 , 0.04176439 , - 0.0758301 ]
48
+ [- 0.12525563 , 0.38030425 , - 3.961622 , 0.04176439 , - 0.0758301 ]
61
49
),
62
50
"thenlper/gte-large" : np .array (
63
51
[- 0.01920587 , 0.00113156 , - 0.00708992 , - 0.00632304 , - 0.04025577 ]
64
52
),
65
53
"mixedbread-ai/mxbai-embed-large-v1" : np .array (
66
54
[0.02295546 , 0.03196154 , 0.016512 , - 0.04031524 , - 0.0219634 ]
67
55
),
68
- "snowflake/snowflake-arctic-embed-xs" : np .array (
69
- [0.0092 , 0.0619 , 0.0196 , 0.009 , - 0.0114 ]
70
- ),
71
- "snowflake/snowflake-arctic-embed-s" : np .array (
72
- [- 0.0416 , - 0.0867 , 0.0209 , 0.0554 , - 0.0272 ]
73
- ),
74
- "snowflake/snowflake-arctic-embed-m" : np .array (
75
- [- 0.0329 , 0.0364 , 0.0481 , 0.0016 , 0.0328 ]
76
- ),
56
+ "snowflake/snowflake-arctic-embed-xs" : np .array ([0.0092 , 0.0619 , 0.0196 , 0.009 , - 0.0114 ]),
57
+ "snowflake/snowflake-arctic-embed-s" : np .array ([- 0.0416 , - 0.0867 , 0.0209 , 0.0554 , - 0.0272 ]),
58
+ "snowflake/snowflake-arctic-embed-m" : np .array ([- 0.0329 , 0.0364 , 0.0481 , 0.0016 , 0.0328 ]),
77
59
"snowflake/snowflake-arctic-embed-m-long" : np .array (
78
60
[0.0080 , - 0.0266 , - 0.0335 , 0.0282 , 0.0143 ]
79
61
),
80
- "snowflake/snowflake-arctic-embed-l" : np .array (
81
- [0.0189 , - 0.0673 , 0.0183 , 0.0124 , 0.0146 ]
82
- ),
62
+ "snowflake/snowflake-arctic-embed-l" : np .array ([0.0189 , - 0.0673 , 0.0183 , 0.0124 , 0.0146 ]),
83
63
"Qdrant/clip-ViT-B-32-text" : np .array ([0.0083 , 0.0103 , - 0.0138 , 0.0199 , - 0.0069 ]),
84
64
}
85
65
@@ -94,7 +74,6 @@ def test_embedding():
94
74
dim = model_desc ["dim" ]
95
75
96
76
model = TextEmbedding (model_name = model_desc ["model" ])
97
-
98
77
docs = ["hello world" , "flag embedding" ]
99
78
embeddings = list (model .embed (docs ))
100
79
embeddings = np .stack (embeddings , axis = 0 )
0 commit comments