|
| 1 | +from enum import Enum |
| 2 | +from typing import Any, Type, Iterable, Union, Optional |
| 3 | + |
| 4 | +import numpy as np |
| 5 | + |
| 6 | +from fastembed.text.pooled_normalized_embedding import PooledNormalizedEmbedding |
| 7 | +from fastembed.text.onnx_embedding import OnnxTextEmbeddingWorker |
| 8 | +from fastembed.text.onnx_text_model import TextEmbeddingWorker |
| 9 | + |
| 10 | +supported_multitask_models = [ |
| 11 | + { |
| 12 | + "model": "jinaai/jina-embeddings-v3", |
| 13 | + "dim": 1024, |
| 14 | + "tasks": { |
| 15 | + "retrieval.query": 0, |
| 16 | + "retrieval.passage": 1, |
| 17 | + "separation": 2, |
| 18 | + "classification": 3, |
| 19 | + "text-matching": 4, |
| 20 | + }, |
| 21 | + "description": "Multi-task unimodal (text) embedding model, multi-lingual (~100), 1024 tokens truncation, and 8192 sequence length. Prefixes for queries/documents: not necessary, 2024 year.", |
| 22 | + "license": "cc-by-nc-4.0", |
| 23 | + "size_in_GB": 2.29, |
| 24 | + "sources": { |
| 25 | + "hf": "jinaai/jina-embeddings-v3", |
| 26 | + }, |
| 27 | + "model_file": "onnx/model.onnx", |
| 28 | + "additional_files": ["onnx/model.onnx_data"], |
| 29 | + }, |
| 30 | +] |
| 31 | + |
| 32 | + |
| 33 | +class Task(int, Enum): |
| 34 | + RETRIEVAL_QUERY = 0 |
| 35 | + RETRIEVAL_PASSAGE = 1 |
| 36 | + SEPARATION = 2 |
| 37 | + CLASSIFICATION = 3 |
| 38 | + TEXT_MATCHING = 4 |
| 39 | + |
| 40 | + |
| 41 | +class JinaEmbeddingV3(PooledNormalizedEmbedding): |
| 42 | + PASSAGE_TASK = Task.RETRIEVAL_PASSAGE |
| 43 | + QUERY_TASK = Task.RETRIEVAL_QUERY |
| 44 | + |
| 45 | + def __init__(self, *args, **kwargs): |
| 46 | + super().__init__(*args, **kwargs) |
| 47 | + self._current_task_id = self.PASSAGE_TASK |
| 48 | + |
| 49 | + @classmethod |
| 50 | + def _get_worker_class(cls) -> Type["TextEmbeddingWorker"]: |
| 51 | + return JinaEmbeddingV3Worker |
| 52 | + |
| 53 | + @classmethod |
| 54 | + def list_supported_models(cls) -> list[dict[str, Any]]: |
| 55 | + return supported_multitask_models |
| 56 | + |
| 57 | + def _preprocess_onnx_input( |
| 58 | + self, onnx_input: dict[str, np.ndarray], **kwargs |
| 59 | + ) -> dict[str, np.ndarray]: |
| 60 | + onnx_input["task_id"] = np.array(self._current_task_id, dtype=np.int64) |
| 61 | + return onnx_input |
| 62 | + |
| 63 | + def embed( |
| 64 | + self, |
| 65 | + documents: Union[str, Iterable[str]], |
| 66 | + batch_size: int = 256, |
| 67 | + parallel: Optional[int] = None, |
| 68 | + task_id: int = PASSAGE_TASK, |
| 69 | + **kwargs, |
| 70 | + ) -> Iterable[np.ndarray]: |
| 71 | + self._current_task_id = task_id |
| 72 | + kwargs["task_id"] = task_id |
| 73 | + yield from super().embed(documents, batch_size, parallel, **kwargs) |
| 74 | + |
| 75 | + def query_embed(self, query: Union[str, Iterable[str]], **kwargs) -> Iterable[np.ndarray]: |
| 76 | + self._current_task_id = self.QUERY_TASK |
| 77 | + yield from super().embed(query, **kwargs) |
| 78 | + |
| 79 | + def passage_embed(self, texts: Iterable[str], **kwargs) -> Iterable[np.ndarray]: |
| 80 | + self._current_task_id = self.PASSAGE_TASK |
| 81 | + yield from super().embed(texts, **kwargs) |
| 82 | + |
| 83 | + |
| 84 | +class JinaEmbeddingV3Worker(OnnxTextEmbeddingWorker): |
| 85 | + def init_embedding( |
| 86 | + self, |
| 87 | + model_name: str, |
| 88 | + cache_dir: str, |
| 89 | + **kwargs, |
| 90 | + ) -> JinaEmbeddingV3: |
| 91 | + model = JinaEmbeddingV3( |
| 92 | + model_name=model_name, |
| 93 | + cache_dir=cache_dir, |
| 94 | + threads=1, |
| 95 | + **kwargs, |
| 96 | + ) |
| 97 | + model._current_task_id = kwargs["task_id"] |
| 98 | + return model |
0 commit comments