-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnet_.py
114 lines (86 loc) · 3.83 KB
/
resnet_.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import os
project_index = os.getcwd().find('fine-grained2019AAAI')
root = os.getcwd()[0:project_index] + 'fine-grained2019AAAI'
import sys
sys.path.append(root)
import torch
import time
import copy
from torch import nn, optim
from torchvision.models import resnet50
from torch.optim import lr_scheduler
from diversification_block import DiversificationBlock
# from utils.write_log import log_here
# from config.config_para import opt
# from tartgetdata.GetData import dataloaders
class IndetifyLayer(nn.Module):
def __init__(self):
super(IndetifyLayer, self).__init__()
def forward(self, x):
return x
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
CNN_model = resnet50(pretrained=True) # 可以选择别的网络
CNN_model.name = 'resnet50'
for param in CNN_model.parameters():
param.requires_grad = False
CNN_model.avgpool = torch.nn.Sequential(torch.nn.Conv2d(2048, opt.num_classes, 1),
torch.nn.AdaptiveAvgPool2d((1,1)))
CNN_model.fc = IndetifyLayer()
model_ft = CNN_model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer_ft = optim.SGD(CNN_model.parameters(), lr=0.001, momentum=0.9)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
def train_model(model, criterion, optimizer, scheduler, num_epochs=opt.epochs, save_path='checkpoints/'):
since = time.time()
path = root + '/checkpoints/model.pth'
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
epoch_info = 'Epoch {}/{}'.format(epoch, num_epochs - 1)
blank = '-' * 10
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over tartgetdata.
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
loss_info = '{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc)
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
prefix = 'model' + str(epoch) + '.pth'
torch.save(best_model_wts, os.path.join(save_path, prefix))
prefix_1 = 'model.pth'
torch.save(best_model_wts, os.path.join(save_path, prefix_1))
time_elapsed = time.time() - since
time_info = 'Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)
val_info = 'Best val Acc: {:4f}'.format(best_acc)
# load best model weights
model.load_state_dict(best_model_wts)
return model