@@ -11,8 +11,8 @@ Segmentation based on [PyTorch](https://pytorch.org/).**
11
11
The main features of this library are:
12
12
13
13
- High level API (just two lines to create neural network)
14
- - 5 models architectures for binary and multi class segmentation (including legendary Unet)
15
- - 46 available encoders for each architecture
14
+ - 7 models architectures for binary and multi class segmentation (including legendary Unet)
15
+ - 57 available encoders for each architecture
16
16
- All encoders have pre-trained weights for faster and better convergence
17
17
18
18
### Table of content
@@ -68,7 +68,7 @@ preprocess_input = get_preprocessing_fn('resnet18', pretrained='imagenet')
68
68
- [ FPN] ( http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf )
69
69
- [ PSPNet] ( https://arxiv.org/abs/1612.01105 )
70
70
- [ PAN] ( https://arxiv.org/abs/1805.10180 )
71
- - [ DeepLabV3] ( https://arxiv.org/abs/1706.05587 )
71
+ - [ DeepLabV3] ( https://arxiv.org/abs/1706.05587 ) and [ DeepLabV3+ ] ( https://arxiv.org/abs/1802.02611 )
72
72
73
73
#### Encoders <a name =" encoders " ></a >
74
74
@@ -132,7 +132,7 @@ preprocess_input = get_preprocessing_fn('resnet18', pretrained='imagenet')
132
132
| timm-efficientnet-b8 | imagenet<br >advprop | 84M |
133
133
| timm-efficientnet-l2 | noisy-student | 474M |
134
134
135
- \* ` ssl ` , ` wsl ` from [ here ] ( https://github.com/facebookresearch/semi-supervised-ImageNet1K-models ) .
135
+ \* ` ssl ` , ` wsl ` - semi-supervised and weakly-supervised learning on ImageNet ( [ repo ] ( https://github.com/facebookresearch/semi-supervised-ImageNet1K-models ) ).
136
136
137
137
### Models API <a name =" api " ></a >
138
138
0 commit comments