|
| 1 | +--- |
| 2 | +jupyter: |
| 3 | + jupytext: |
| 4 | + text_representation: |
| 5 | + extension: .md |
| 6 | + format_name: markdown |
| 7 | + format_version: '1.3' |
| 8 | + jupytext_version: 1.17.0 |
| 9 | + kernelspec: |
| 10 | + display_name: qiskit-stable8 |
| 11 | + language: python |
| 12 | + name: python3 |
| 13 | +--- |
| 14 | + |
| 15 | +### GRAPE calculation of control fields for cnot implementation |
| 16 | + |
| 17 | +[This is an updated implementation based on the deprecated notebook of GRAPE CNOT implementation by Robert Johansson](https://nbviewer.org/github/qutip/qutip-notebooks/blob/master/examples/control-grape-cnot.ipynb) |
| 18 | + |
| 19 | +```python |
| 20 | +import matplotlib.pyplot as plt |
| 21 | +import numpy as np |
| 22 | +import qutip as qt |
| 23 | +# the library for quantum control |
| 24 | +import qutip_qtrl.pulseoptim as cpo |
| 25 | +``` |
| 26 | + |
| 27 | +```python |
| 28 | +# total duration |
| 29 | +T = 2 * np.pi |
| 30 | +# number of time steps |
| 31 | +times = np.linspace(0, T, 500) |
| 32 | +``` |
| 33 | + |
| 34 | +```python |
| 35 | +U_0 = qt.operators.identity(4) |
| 36 | +U_target = qt.core.gates.cnot() |
| 37 | +``` |
| 38 | + |
| 39 | +### Starting Point |
| 40 | + |
| 41 | +```python |
| 42 | +U_0 |
| 43 | +``` |
| 44 | + |
| 45 | +### Target Operator |
| 46 | + |
| 47 | +```python |
| 48 | +U_target |
| 49 | +``` |
| 50 | + |
| 51 | +```python |
| 52 | +# Drift Hamiltonian |
| 53 | +g = 0 |
| 54 | +H_drift = g * ( |
| 55 | + qt.tensor(qt.sigmax(), qt.sigmax()) + qt.tensor(qt.sigmay(), qt.sigmay()) |
| 56 | +) |
| 57 | +``` |
| 58 | + |
| 59 | +```python |
| 60 | +H_ctrl = [ |
| 61 | + qt.tensor(qt.sigmax(), qt.identity(2)), |
| 62 | + qt.tensor(qt.sigmay(), qt.identity(2)), |
| 63 | + qt.tensor(qt.sigmaz(), qt.identity(2)), |
| 64 | + qt.tensor(qt.identity(2), qt.sigmax()), |
| 65 | + qt.tensor(qt.identity(2), qt.sigmay()), |
| 66 | + qt.tensor(qt.identity(2), qt.sigmaz()), |
| 67 | + qt.tensor(qt.sigmax(), qt.sigmax()), |
| 68 | + qt.tensor(qt.sigmay(), qt.sigmay()), |
| 69 | + qt.tensor(qt.sigmaz(), qt.sigmaz()), |
| 70 | +] |
| 71 | +``` |
| 72 | + |
| 73 | +```python |
| 74 | +H_labels = [ |
| 75 | + r"$u_{1x}$", |
| 76 | + r"$u_{1y}$", |
| 77 | + r"$u_{1z}$", |
| 78 | + r"$u_{2x}$", |
| 79 | + r"$u_{2y}$", |
| 80 | + r"$u_{2z}$", |
| 81 | + r"$u_{xx}$", |
| 82 | + r"$u_{yy}$", |
| 83 | + r"$u_{zz}$", |
| 84 | +] |
| 85 | +``` |
| 86 | + |
| 87 | +## GRAPE |
| 88 | + |
| 89 | +```python |
| 90 | +result = cpo.optimize_pulse_unitary( |
| 91 | + H_drift, |
| 92 | + H_ctrl, |
| 93 | + U_0, |
| 94 | + U_target, |
| 95 | + num_tslots=500, |
| 96 | + evo_time=(2 * np.pi), |
| 97 | + # this attribute is crucial for convergence!! |
| 98 | + amp_lbound=-(2 * np.pi * 0.05), |
| 99 | + amp_ubound=(2 * np.pi * 0.05), |
| 100 | + fid_err_targ=1e-9, |
| 101 | + max_iter=500, |
| 102 | + max_wall_time=60, |
| 103 | + alg="GRAPE", |
| 104 | + optim_method="FMIN_L_BFGS_B", |
| 105 | + method_params={ |
| 106 | + "disp": True, |
| 107 | + "maxiter": 1000, |
| 108 | + }, |
| 109 | +) |
| 110 | +``` |
| 111 | + |
| 112 | +```python |
| 113 | +for attr in dir(result): |
| 114 | + if not attr.startswith("_"): |
| 115 | + print(f"{attr}: {getattr(result, attr)}") |
| 116 | + |
| 117 | +print(np.shape(result.final_amps)) |
| 118 | +``` |
| 119 | + |
| 120 | +## Plot control fields for cnot gate in the presense of single-qubit tunnelling |
| 121 | + |
| 122 | +```python |
| 123 | +def plot_control_amplitudes(times, final_amps, labels): |
| 124 | + num_controls = final_amps.shape[1] |
| 125 | + |
| 126 | + y_max = 0.1 # Fixed y-axis scale |
| 127 | + y_min = -0.1 |
| 128 | + |
| 129 | + for i in range(num_controls): |
| 130 | + fig, ax = plt.subplots(figsize=(8, 3)) |
| 131 | + |
| 132 | + for j in range(num_controls): |
| 133 | + # Highlight the current control |
| 134 | + color = "black" if i == j else "gray" |
| 135 | + alpha = 1.0 if i == j else 0.1 |
| 136 | + ax.plot( |
| 137 | + times, |
| 138 | + final_amps[:, j], |
| 139 | + label=labels[j], |
| 140 | + color=color, |
| 141 | + alpha=alpha |
| 142 | + ) |
| 143 | + ax.set_title(f"Control Fields Highlighting: {labels[i]}") |
| 144 | + ax.set_xlabel("Time") |
| 145 | + ax.set_ylabel(labels[i]) |
| 146 | + ax.set_ylim(y_min, y_max) # Set fixed y-axis limits |
| 147 | + ax.grid(True) |
| 148 | + ax.legend() |
| 149 | + plt.tight_layout() |
| 150 | + plt.show() |
| 151 | + |
| 152 | + |
| 153 | +plot_control_amplitudes(times, result.final_amps / (2 * np.pi), H_labels) |
| 154 | +``` |
| 155 | + |
| 156 | +## Fidelity/overlap |
| 157 | + |
| 158 | +```python |
| 159 | +U_target |
| 160 | +``` |
| 161 | + |
| 162 | +```python |
| 163 | +U_f = result.evo_full_final |
| 164 | +U_f.dims = [[2, 2], [2, 2]] |
| 165 | +``` |
| 166 | + |
| 167 | +```python |
| 168 | +U_f |
| 169 | +``` |
| 170 | + |
| 171 | +```python |
| 172 | +print(f"Fidelity: {qt.process_fidelity(U_f, U_target)}") |
| 173 | +``` |
| 174 | + |
| 175 | +## Proceess tomography |
| 176 | + |
| 177 | + |
| 178 | +Quantum Process Tomography (QPT) is a technique used to characterize an unknown quantum operation by reconstructing its process matrix (also called the χ (chi) matrix). This matrix describes how an input quantum state is transformed by the operation. |
| 179 | + |
| 180 | + |
| 181 | +Defines the basis operators |
| 182 | +{ |
| 183 | +𝐼 |
| 184 | +, |
| 185 | +𝑋 |
| 186 | +, |
| 187 | +𝑌 |
| 188 | +, |
| 189 | +𝑍 |
| 190 | +} |
| 191 | +for the two-qubit system. |
| 192 | + |
| 193 | +These operators form a complete basis to describe any quantum operation in the Pauli basis. |
| 194 | + |
| 195 | + |
| 196 | +### Ideal cnot gate |
| 197 | + |
| 198 | +```python |
| 199 | +op_basis = [[qt.qeye(2), qt.sigmax(), qt.sigmay(), qt.sigmaz()]] * 2 |
| 200 | +op_label = [["i", "x", "y", "z"]] * 2 |
| 201 | +``` |
| 202 | + |
| 203 | +U_target is the ideal CNOT gate. |
| 204 | + |
| 205 | +qt.to_super(U_target) converts it into superoperator form, which is necessary for QPT. |
| 206 | + |
| 207 | +qt.qpt(U_i_s, op_basis) computes the χ matrix for the ideal gate. |
| 208 | + |
| 209 | +```python |
| 210 | +fig = plt.figure(figsize=(12, 6)) |
| 211 | + |
| 212 | +U_i_s = qt.to_super(U_target) |
| 213 | + |
| 214 | +chi = qt.qpt(U_i_s, op_basis) |
| 215 | + |
| 216 | +fig = qt.qpt_plot_combined(chi, op_label, fig=fig, threshold=0.001) |
| 217 | +``` |
| 218 | + |
| 219 | +```python |
| 220 | +op_basis = [[qt.qeye(2), qt.sigmax(), qt.sigmay(), qt.sigmaz()]] * 2 |
| 221 | +op_label = [["i", "x", "y", "z"]] * 2 |
| 222 | +``` |
| 223 | + |
| 224 | +```python |
| 225 | +fig = plt.figure(figsize=(12, 6)) |
| 226 | + |
| 227 | +U_f_s = qt.to_super(U_f) |
| 228 | + |
| 229 | +chi = qt.qpt(U_f_s, op_basis) |
| 230 | + |
| 231 | +fig = qt.qpt_plot_combined(chi, op_label, fig=fig, threshold=0.01) |
| 232 | +``` |
| 233 | + |
| 234 | +## Versions |
| 235 | + |
| 236 | + |
| 237 | +```python |
| 238 | +qt.about() |
| 239 | +``` |
0 commit comments