Skip to content

Commit 7de3db4

Browse files
committed
pep8 formatting
1 parent 72b7527 commit 7de3db4

File tree

1 file changed

+7
-6
lines changed

1 file changed

+7
-6
lines changed

tutorials-v5/visualization/distributions.md

Lines changed: 7 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,8 @@ This notebook shows how to use probability distributions inside QuTiP. We begin
2222

2323
```python
2424
from qutip import fock
25-
from qutip.distributions import HarmonicOscillatorWaveFunction, HarmonicOscillatorProbabilityFunction
25+
from qutip.distributions import HarmonicOscillatorWaveFunction
26+
from qutip.distributions import HarmonicOscillatorProbabilityFunction
2627
import matplotlib.pyplot as plt
2728
```
2829

@@ -33,8 +34,8 @@ Here, we display the spatial distribution of the wave function for the harmonic
3334
Optionally, define a range of values for each coordinate with the parameter called `extent`. Also, define a number of data points inside the given range with the optional parameter called `steps`. From this information, the distribution is generated and can be visualized with the `.visualize()` method.
3435

3536
```python
36-
M=8
37-
N=20
37+
M = 8
38+
N = 20
3839

3940
fig, ax = plt.subplots(M, 1, figsize=(10, 12), sharex=True)
4041

@@ -49,8 +50,8 @@ for n in range(M):
4950
The class `HarmonicOscillatorProbabilityFunction()` is the squared magnitude of the data that would normally be in `HarmonicOscillatorWaveFunction()`. We use the same example as before.
5051

5152
```python
52-
M=8
53-
N=20
53+
M = 8
54+
N = 20
5455

5556
fig, ax = plt.subplots(M, 1, figsize=(10, 12), sharex=True)
5657

@@ -63,5 +64,5 @@ for n in range(M):
6364
### About
6465

6566
```python
66-
qutip.about()
67+
about()
6768
```

0 commit comments

Comments
 (0)