-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathdaily_coding_problem_46_50.py
139 lines (107 loc) · 4.95 KB
/
daily_coding_problem_46_50.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import operator as ops
def coding_problem_46(str):
"""
Given a string, find the longest palindromic contiguous substring. If there are more than one with the maximum
length, return any one. Examples:
>>> coding_problem_46("aabcdcb")
'bcdcb'
>>> coding_problem_46("bananas")
'anana'
"""
for length in range(len(str), 0, -1):
for offset in range(len(str) - length + 1):
sub_str = str[offset:offset + length]
if sub_str == sub_str[::-1]:
return sub_str
def coding_problem_47(prices):
"""
Given a array of numbers representing the stock prices of a company in chronological order, write a function that
calculates the maximum profit you could have made from buying and selling that stock once. You must buy before you
can sell it. For example, given [9, 11, 8, 5, 7, 10], you should return 5, since you could buy the stock at 5
dollars and sell it at 10 dollars.
>>> coding_problem_47([9, 11, 8, 5, 7, 10])
5
Here's the inefficient one-liner:
>>> prices = [9, 11, 8, 5, 7, 10]
>>> max([max(prices[today + 1:]) - prices[today] for today in range(len(prices) - 1)])
5
"""
max_future_price, max_profit = prices[-1], 0
for index in range(len(prices) - 1, 0, -1):
max_future_price = max(max_future_price, prices[index])
max_profit = max(max_profit, max_future_price - prices[index - 1])
return max_profit
def coding_problem_48(io, po):
"""
Given pre-order and in-order traversals of a binary tree, write a function to reconstruct the tree.
Example:
>>> def pre_order(tree):
... return [] if tree is None else [tree[0]] + pre_order(tree[1]) + pre_order(tree[2])
>>> def in_order(tree):
... return [] if tree is None else in_order(tree[1]) + [tree[0]] + in_order(tree[2])
>>> tree = ['1B', ['2A', None, None], ['3F', ['4D', ['5C', None, None], ['6E', None, None]], ['7G', None, None]]]
>>> po = pre_order(tree) # ['1B', '2A', '3F', '4D', '5C', '6E', '7G']
>>> io = in_order(tree) # ['2A', '1B', '5C', '4D', '6E', '3F', '7G']
>>> tree == coding_problem_48(io, po)
True
"""
root_value = po[0]
root_index = io.index(root_value)
io_left_nodes = io[:root_index]
io_right_nodes = io[root_index + 1:]
po_left_nodes = [val for val in po if val in io_left_nodes]
po_right_nodes = [val for val in po if val in io_right_nodes]
left_subtree = coding_problem_48(io_left_nodes, po_left_nodes) if io_left_nodes else None
right_subtree = coding_problem_48(io_right_nodes, po_right_nodes) if io_right_nodes else None
return [root_value, left_subtree, right_subtree]
def coding_problem_49(arr):
"""
Given an array of numbers, find the maximum sum of any contiguous subarray of the array.
For example, given the array [34, -50, 42, 14, -5, 86], the maximum sum would be 137, since we would take elements
42, 14, -5, and 86. Given the array [-5, -1, -8, -9], the maximum sum would be 0, since we would not take any
elements. Do this in O(N) time.
Examples:
>>> coding_problem_49([34, -50, 42, 14, -5, 86])
137
>>> coding_problem_49([-5, -1, -8, -9])
0
Note: this is similar to the stock prices example of #47.
Note2: alas, I was on the free tier and this is the last problem I was sent. It's been fun, enabling and
informative. Thank you dailycodingproblem.com !
"""
cumulative_sum, cumulative_sums = 0, [0]
for val in arr:
cumulative_sum += val
cumulative_sums.append(cumulative_sum)
highest_peak, max_sum = cumulative_sums[-1], 0
for index in range(len(cumulative_sums) - 1, 0, -1):
highest_peak = max(highest_peak, cumulative_sums[index])
max_sum = max(max_sum, highest_peak - cumulative_sums[index - 1])
return max_sum
def coding_problem_50(tree_or_number):
"""
Suppose an arithmetic expression is given as a binary tree. Each leaf is an integer and each internal node
is one of '+', '-', '*' or '/'. Given the root to such a tree, write a function to evaluate it.
For example, given the following tree:
*
/ \
+ +
/ \ / \
3 2 4 5
you should return 45, as it is (3 + 2) * (4 + 5).
Examples:
>>> coding_problem_50(('*', ('+', 3, 2), ('+', 4, 5))) # (3 + 2) * (4 + 5) == 45
45
>>> coding_problem_50(('/', ('+', ('+', 1, 2), 3), 12)) # (1 + 2 + 3) / 12 == 0.5
0.5
Note: problem 49 was the last one I received; this comes from github.com/r1cc4rdo/daily_coding_problem/pull/7,
a pull request from RMPR (https://github.com/RMPR). Thanks!
"""
if not isinstance(tree_or_number, tuple): # it's an integer leaf
return tree_or_number
op, left, right = tree_or_number
op2fun = {'+': ops.add, '-': ops.sub, '*': ops.mul, '/': ops.truediv}
return op2fun[op](coding_problem_50(left), coding_problem_50(right))
if __name__ == '__main__':
import doctest
doctest.testmod(verbose=True)