|
| 1 | +# https://en.wikipedia.org/wiki/Hill_climbing |
| 2 | +import math |
| 3 | + |
| 4 | + |
| 5 | +class SearchProblem: |
| 6 | + """ |
| 7 | + A interface to define search problems. The interface will be illustrated using |
| 8 | + the example of mathematical function. |
| 9 | + """ |
| 10 | + |
| 11 | + def __init__(self, x: int, y: int, step_size: int, function_to_optimize): |
| 12 | + """ |
| 13 | + The constructor of the search problem. |
| 14 | + x: the x coordinate of the current search state. |
| 15 | + y: the y coordinate of the current search state. |
| 16 | + step_size: size of the step to take when looking for neighbors. |
| 17 | + function_to_optimize: a function to optimize having the signature f(x, y). |
| 18 | + """ |
| 19 | + self.x = x |
| 20 | + self.y = y |
| 21 | + self.step_size = step_size |
| 22 | + self.function = function_to_optimize |
| 23 | + |
| 24 | + def score(self) -> int: |
| 25 | + """ |
| 26 | + Returns the output for the function called with current x and y coordinates. |
| 27 | + >>> def test_function(x, y): |
| 28 | + ... return x + y |
| 29 | + >>> SearchProblem(0, 0, 1, test_function).score() # 0 + 0 = 0 |
| 30 | + 0 |
| 31 | + >>> SearchProblem(5, 7, 1, test_function).score() # 5 + 7 = 12 |
| 32 | + 12 |
| 33 | + """ |
| 34 | + return self.function(self.x, self.y) |
| 35 | + |
| 36 | + def get_neighbors(self): |
| 37 | + """ |
| 38 | + Returns a list of coordinates of neighbors adjacent to the current coordinates. |
| 39 | +
|
| 40 | + Neighbors: |
| 41 | + | 0 | 1 | 2 | |
| 42 | + | 3 | _ | 4 | |
| 43 | + | 5 | 6 | 7 | |
| 44 | + """ |
| 45 | + step_size = self.step_size |
| 46 | + return [ |
| 47 | + SearchProblem(x, y, step_size, self.function) |
| 48 | + for x, y in ( |
| 49 | + (self.x - step_size, self.y - step_size), |
| 50 | + (self.x - step_size, self.y), |
| 51 | + (self.x - step_size, self.y + step_size), |
| 52 | + (self.x, self.y - step_size), |
| 53 | + (self.x, self.y + step_size), |
| 54 | + (self.x + step_size, self.y - step_size), |
| 55 | + (self.x + step_size, self.y), |
| 56 | + (self.x + step_size, self.y + step_size), |
| 57 | + ) |
| 58 | + ] |
| 59 | + |
| 60 | + def __hash__(self): |
| 61 | + """ |
| 62 | + hash the string represetation of the current search state. |
| 63 | + """ |
| 64 | + return hash(str(self)) |
| 65 | + |
| 66 | + def __str__(self): |
| 67 | + """ |
| 68 | + string representation of the current search state. |
| 69 | + >>> str(SearchProblem(0, 0, 1, None)) |
| 70 | + 'x: 0 y: 0' |
| 71 | + >>> str(SearchProblem(2, 5, 1, None)) |
| 72 | + 'x: 2 y: 5' |
| 73 | + """ |
| 74 | + return f"x: {self.x} y: {self.y}" |
| 75 | + |
| 76 | + |
| 77 | +def hill_climbing( |
| 78 | + search_prob, |
| 79 | + find_max: bool = True, |
| 80 | + max_x: float = math.inf, |
| 81 | + min_x: float = -math.inf, |
| 82 | + max_y: float = math.inf, |
| 83 | + min_y: float = -math.inf, |
| 84 | + visualization: bool = False, |
| 85 | + max_iter: int = 10000, |
| 86 | +) -> SearchProblem: |
| 87 | + """ |
| 88 | + implementation of the hill climbling algorithm. We start with a given state, find |
| 89 | + all its neighbors, move towards the neighbor which provides the maximum (or |
| 90 | + minimum) change. We keep doing this untill we are at a state where we do not |
| 91 | + have any neighbors which can improve the solution. |
| 92 | + Args: |
| 93 | + search_prob: The search state at the start. |
| 94 | + find_max: If True, the algorithm should find the minimum else the minimum. |
| 95 | + max_x, min_x, max_y, min_y: the maximum and minimum bounds of x and y. |
| 96 | + visualization: If True, a matplotlib graph is displayed. |
| 97 | + max_iter: number of times to run the iteration. |
| 98 | + Returns a search state having the maximum (or minimum) score. |
| 99 | + """ |
| 100 | + current_state = search_prob |
| 101 | + scores = [] # list to store the current score at each iteration |
| 102 | + iterations = 0 |
| 103 | + solution_found = False |
| 104 | + visited = set() |
| 105 | + while not solution_found and iterations < max_iter: |
| 106 | + visited.add(current_state) |
| 107 | + iterations += 1 |
| 108 | + current_score = current_state.score() |
| 109 | + scores.append(current_score) |
| 110 | + neighbors = current_state.get_neighbors() |
| 111 | + max_change = -math.inf |
| 112 | + min_change = math.inf |
| 113 | + next_state = None # to hold the next best neighbor |
| 114 | + for neighbor in neighbors: |
| 115 | + if neighbor in visited: |
| 116 | + continue # do not want to visit the same state again |
| 117 | + if ( |
| 118 | + neighbor.x > max_x |
| 119 | + or neighbor.x < min_x |
| 120 | + or neighbor.y > max_y |
| 121 | + or neighbor.y < min_y |
| 122 | + ): |
| 123 | + continue # neighbor outside our bounds |
| 124 | + change = neighbor.score() - current_score |
| 125 | + if find_max: # finding max |
| 126 | + # going to direction with greatest ascent |
| 127 | + if change > max_change and change > 0: |
| 128 | + max_change = change |
| 129 | + next_state = neighbor |
| 130 | + else: # finding min |
| 131 | + # to direction with greatest descent |
| 132 | + if change < min_change and change < 0: |
| 133 | + min_change = change |
| 134 | + next_state = neighbor |
| 135 | + if next_state is not None: |
| 136 | + # we found at least one neighbor which improved the current state |
| 137 | + current_state = next_state |
| 138 | + else: |
| 139 | + # since we have no neighbor that improves the solution we stop the search |
| 140 | + solution_found = True |
| 141 | + |
| 142 | + if visualization: |
| 143 | + import matplotlib.pyplot as plt |
| 144 | + |
| 145 | + plt.plot(range(iterations), scores) |
| 146 | + plt.xlabel("Iterations") |
| 147 | + plt.ylabel("Function values") |
| 148 | + plt.show() |
| 149 | + |
| 150 | + return current_state |
| 151 | + |
| 152 | + |
| 153 | +if __name__ == "__main__": |
| 154 | + import doctest |
| 155 | + |
| 156 | + doctest.testmod() |
| 157 | + |
| 158 | + def test_f1(x, y): |
| 159 | + return (x ** 2) + (y ** 2) |
| 160 | + |
| 161 | + # starting the problem with initial coordinates (3, 4) |
| 162 | + prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1) |
| 163 | + local_min = hill_climbing(prob, find_max=False) |
| 164 | + print( |
| 165 | + "The minimum score for f(x, y) = x^2 + y^2 found via hill climbing: " |
| 166 | + f"{local_min.score()}" |
| 167 | + ) |
| 168 | + |
| 169 | + # starting the problem with initial coordinates (12, 47) |
| 170 | + prob = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_f1) |
| 171 | + local_min = hill_climbing( |
| 172 | + prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True |
| 173 | + ) |
| 174 | + print( |
| 175 | + "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " |
| 176 | + f"and 50 > y > - 5 found via hill climbing: {local_min.score()}" |
| 177 | + ) |
| 178 | + |
| 179 | + def test_f2(x, y): |
| 180 | + return (3 * x ** 2) - (6 * y) |
| 181 | + |
| 182 | + prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1) |
| 183 | + local_min = hill_climbing(prob, find_max=True) |
| 184 | + print( |
| 185 | + "The maximum score for f(x, y) = x^2 + y^2 found via hill climbing: " |
| 186 | + f"{local_min.score()}" |
| 187 | + ) |
0 commit comments