Skip to content

Commit cbab5f1

Browse files
Faraz126cclauss
andcommitted
added hill climbing algorithm (TheAlgorithms#1666)
* added hill climbing algorithm * Shorten long lines, streamline get_neighbors() * Update hill_climbing.py * Update and rename optimization/hill_climbing.py to searches/hill_climbing.py Co-authored-by: Christian Clauss <[email protected]>
1 parent 46df735 commit cbab5f1

File tree

2 files changed

+188
-0
lines changed

2 files changed

+188
-0
lines changed

optimization/requirements.txt

+1
Original file line numberDiff line numberDiff line change
@@ -0,0 +1 @@
1+
matplotlib

searches/hill_climbing.py

+187
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,187 @@
1+
# https://en.wikipedia.org/wiki/Hill_climbing
2+
import math
3+
4+
5+
class SearchProblem:
6+
"""
7+
A interface to define search problems. The interface will be illustrated using
8+
the example of mathematical function.
9+
"""
10+
11+
def __init__(self, x: int, y: int, step_size: int, function_to_optimize):
12+
"""
13+
The constructor of the search problem.
14+
x: the x coordinate of the current search state.
15+
y: the y coordinate of the current search state.
16+
step_size: size of the step to take when looking for neighbors.
17+
function_to_optimize: a function to optimize having the signature f(x, y).
18+
"""
19+
self.x = x
20+
self.y = y
21+
self.step_size = step_size
22+
self.function = function_to_optimize
23+
24+
def score(self) -> int:
25+
"""
26+
Returns the output for the function called with current x and y coordinates.
27+
>>> def test_function(x, y):
28+
... return x + y
29+
>>> SearchProblem(0, 0, 1, test_function).score() # 0 + 0 = 0
30+
0
31+
>>> SearchProblem(5, 7, 1, test_function).score() # 5 + 7 = 12
32+
12
33+
"""
34+
return self.function(self.x, self.y)
35+
36+
def get_neighbors(self):
37+
"""
38+
Returns a list of coordinates of neighbors adjacent to the current coordinates.
39+
40+
Neighbors:
41+
| 0 | 1 | 2 |
42+
| 3 | _ | 4 |
43+
| 5 | 6 | 7 |
44+
"""
45+
step_size = self.step_size
46+
return [
47+
SearchProblem(x, y, step_size, self.function)
48+
for x, y in (
49+
(self.x - step_size, self.y - step_size),
50+
(self.x - step_size, self.y),
51+
(self.x - step_size, self.y + step_size),
52+
(self.x, self.y - step_size),
53+
(self.x, self.y + step_size),
54+
(self.x + step_size, self.y - step_size),
55+
(self.x + step_size, self.y),
56+
(self.x + step_size, self.y + step_size),
57+
)
58+
]
59+
60+
def __hash__(self):
61+
"""
62+
hash the string represetation of the current search state.
63+
"""
64+
return hash(str(self))
65+
66+
def __str__(self):
67+
"""
68+
string representation of the current search state.
69+
>>> str(SearchProblem(0, 0, 1, None))
70+
'x: 0 y: 0'
71+
>>> str(SearchProblem(2, 5, 1, None))
72+
'x: 2 y: 5'
73+
"""
74+
return f"x: {self.x} y: {self.y}"
75+
76+
77+
def hill_climbing(
78+
search_prob,
79+
find_max: bool = True,
80+
max_x: float = math.inf,
81+
min_x: float = -math.inf,
82+
max_y: float = math.inf,
83+
min_y: float = -math.inf,
84+
visualization: bool = False,
85+
max_iter: int = 10000,
86+
) -> SearchProblem:
87+
"""
88+
implementation of the hill climbling algorithm. We start with a given state, find
89+
all its neighbors, move towards the neighbor which provides the maximum (or
90+
minimum) change. We keep doing this untill we are at a state where we do not
91+
have any neighbors which can improve the solution.
92+
Args:
93+
search_prob: The search state at the start.
94+
find_max: If True, the algorithm should find the minimum else the minimum.
95+
max_x, min_x, max_y, min_y: the maximum and minimum bounds of x and y.
96+
visualization: If True, a matplotlib graph is displayed.
97+
max_iter: number of times to run the iteration.
98+
Returns a search state having the maximum (or minimum) score.
99+
"""
100+
current_state = search_prob
101+
scores = [] # list to store the current score at each iteration
102+
iterations = 0
103+
solution_found = False
104+
visited = set()
105+
while not solution_found and iterations < max_iter:
106+
visited.add(current_state)
107+
iterations += 1
108+
current_score = current_state.score()
109+
scores.append(current_score)
110+
neighbors = current_state.get_neighbors()
111+
max_change = -math.inf
112+
min_change = math.inf
113+
next_state = None # to hold the next best neighbor
114+
for neighbor in neighbors:
115+
if neighbor in visited:
116+
continue # do not want to visit the same state again
117+
if (
118+
neighbor.x > max_x
119+
or neighbor.x < min_x
120+
or neighbor.y > max_y
121+
or neighbor.y < min_y
122+
):
123+
continue # neighbor outside our bounds
124+
change = neighbor.score() - current_score
125+
if find_max: # finding max
126+
# going to direction with greatest ascent
127+
if change > max_change and change > 0:
128+
max_change = change
129+
next_state = neighbor
130+
else: # finding min
131+
# to direction with greatest descent
132+
if change < min_change and change < 0:
133+
min_change = change
134+
next_state = neighbor
135+
if next_state is not None:
136+
# we found at least one neighbor which improved the current state
137+
current_state = next_state
138+
else:
139+
# since we have no neighbor that improves the solution we stop the search
140+
solution_found = True
141+
142+
if visualization:
143+
import matplotlib.pyplot as plt
144+
145+
plt.plot(range(iterations), scores)
146+
plt.xlabel("Iterations")
147+
plt.ylabel("Function values")
148+
plt.show()
149+
150+
return current_state
151+
152+
153+
if __name__ == "__main__":
154+
import doctest
155+
156+
doctest.testmod()
157+
158+
def test_f1(x, y):
159+
return (x ** 2) + (y ** 2)
160+
161+
# starting the problem with initial coordinates (3, 4)
162+
prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1)
163+
local_min = hill_climbing(prob, find_max=False)
164+
print(
165+
"The minimum score for f(x, y) = x^2 + y^2 found via hill climbing: "
166+
f"{local_min.score()}"
167+
)
168+
169+
# starting the problem with initial coordinates (12, 47)
170+
prob = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_f1)
171+
local_min = hill_climbing(
172+
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
173+
)
174+
print(
175+
"The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 "
176+
f"and 50 > y > - 5 found via hill climbing: {local_min.score()}"
177+
)
178+
179+
def test_f2(x, y):
180+
return (3 * x ** 2) - (6 * y)
181+
182+
prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1)
183+
local_min = hill_climbing(prob, find_max=True)
184+
print(
185+
"The maximum score for f(x, y) = x^2 + y^2 found via hill climbing: "
186+
f"{local_min.score()}"
187+
)

0 commit comments

Comments
 (0)