-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathutil.py
78 lines (56 loc) · 2.29 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import numpy as np
import cv2
from data import DataManager
def _grays_to_RGB(img):
# turn 2D grayscale image into grayscale RGB
return np.dstack((img, img, img))
def generate_image_with_mask(img, mask):
# returns a copy of the image with edges of the mask added in red
img_color = _grays_to_RGB(img)
mask_edges = cv2.Canny(mask, 100, 200) > 0
# Channels = bgr
img_color[mask_edges, 0] = 0
img_color[mask_edges, 1] = 0
img_color[mask_edges, 2] = 255
return img_color
def generate_image_with_masks(img, mask_true, mask_pred):
# returns a copy of the image with edges of the mask added in red
img_color = _grays_to_RGB(img)
mask_edges_true = cv2.Canny(mask_true, 100, 200) > 0
mask_edges_pred = cv2.Canny(mask_pred, 100, 200) > 0
# Channels = bgr
img_color[mask_edges_true, 0] = 0
img_color[mask_edges_true, 1] = 255
img_color[mask_edges_true, 2] = 0
img_color[mask_edges_pred, 2] = 255
return img_color
def examine_generator():
X_train, X_val, y_train, y_val = DataManager.load_train_val_data("all")
from generator import CustomDataGenerator
from train import transform, filter_mask_presence
X_val, y_val = filter_mask_presence(X_val, y_val)
generator = CustomDataGenerator(X_val, y_val, lambda x, y: transform(x, y, augment=True), 32)
imgs, outs = generator.next()
for i in range(len(imgs)):
cv2.imshow("image", imgs[i, 0])
cv2.imshow("mask", outs['main_output'][i, 0])
cv2.waitKey(0)
def inspect_set(train=False):
X_train, X_val, y_train, y_val = DataManager.load_train_val_data("all")
X = X_train if train else X_val
y = y_train if train else y_val
from model import build_model
from train import transform
from submission import post_process_mask
model = build_model()
model.load_weights('./results/net.hdf5')
for i in range(X.shape[0]):
img_i, mask_i = transform(X[i], y[i])
masks, has_mask = model.predict(np.array([img_i]), verbose=1)
print has_mask[0, 0]
# print has_masks[0, 0]
cv2.imshow("Image with mask".format(i), generate_image_with_mask(X[i], y[i]))
cv2.imshow("pred mask".format(i), post_process_mask(masks[0, 0]))
cv2.waitKey(0)
if __name__ == '__main__':
inspect_set(train=False)