-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLogistic_regression.py
63 lines (44 loc) · 1.85 KB
/
Logistic_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import numpy as np
import pylab as pl
from tensorflow.examples.tutorials.mnist import input_data # tf is used just for MNIST dataset
"""
Implementation is based on Andrew's NG course at https://www.coursera.org/learn/machine-learning
"""
# Hypothesis
def h(O, x):
return 1 / (1 + np.exp(1) ** (-np.dot(x, O)))
# Cost (and derivative) function
def J(O, x, y, l, der):
y_ = h(O, x)
m = len(x) # number of data points
if der == 0: # return cost
return (1/m) * np.sum(-y * np.log(y_) - np.subtract(1, y) * np.log(1 - y_)) \
+ np.sum(np.square(l * O[1:len(O)]))
if der == 1: # return derivative
return (1/m) * np.dot((y_ - y).T, x).T
# Accuracy
def accuracy(y, x, O):
return np.sum([y == (h(O, x) > 0.5)]) / len(y)
# Main
# y - array of correct answers (dependent variable)
# x - arrays of other variables (independent variables)
# O - weights (rows correspond to each column of x)
# Data (MNIST dataset from tensorflow)
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
x_train = mnist.train.images
y_train = mnist.train.labels[:,0].reshape((len(x_train), 1)) # picking 1's label only
x_test = mnist.test.images
y_test = mnist.test.labels[:,0].reshape((len(x_test), 1))
O = np.random.uniform(-0.01, 0.01, size=(len(x_train.T), 1))
# Gradient decent
steps = 50
alpha = 1e-3
l = 0.1
train_history = [] # list to save gradient progress
for step in range(steps):
O = O * (1 - alpha * l / len(y_train)) - alpha * J(O, x_train, y_train, l, der=1)
cost = J(O, x_train, y_train, l, der=0)
acc_train, acc_test = accuracy(y_train, x_train, O), accuracy(y_test, x_test, O)
train_history.append((cost, acc_train, acc_test))
print(step, " :", 'cost :', cost, 'train accuracy:', acc_train, 'test accuracy: ', acc_test)
pl.plot(train_history)