This repository was archived by the owner on Jul 12, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
621 lines (537 loc) · 25.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import matplotlib as mpl
import plotly as pl
import plotly.express as px
import plotly.figure_factory as ff
import plotly.offline as pyo
import plotly.graph_objs as go
from plotly.offline import init_notebook_mode, iplot
import pygal
from pygal.maps.world import COUNTRIES
# Set notebook mode to work in offline
pyo.init_notebook_mode()
'''Cleaning the data'''
def preprocess(data):
'''
Clean the data
'''
assert isinstance(data, pd.DataFrame), 'expected loaded dataframe'
MM = data.copy()
MM = MM.sort_values(['country','year'])
start_df = MM[['startday', 'startmonth', 'startyear']].copy()
start_df.columns = ["day", "month", "year"]
start_df = pd.to_datetime(start_df)
end_df = MM[['endday', 'endmonth', 'endyear']].copy()
end_df.columns = ["day", "month", "year"]
end_df = pd.to_datetime(end_df)
endIdx = ~end_df.isnull()
startIdx = ~start_df.isnull()
validIdx = endIdx & startIdx
MM['start'] = start_df
MM['end'] = end_df
MM['protest_time'] = MM.end - MM.start + pd.Timedelta(days=1)
reasons_dict = {'labor wage dispute':'labor',
'land farm issue':'land',
'police brutality': 'policebrutality',
'political behavior, process': 'political',
'price increases, tax policy': 'price',
'removal of politician':'removal',
'social restrictions':'social'}
reasons = {'labor','land','policebrutality','political','price','removal','social','other'}
MM = MM.replace(reasons_dict)
for resn in reasons:
MM['reasons_'+resn] = 0
responses = {'accomodation',
'arrests',
'beatings',
'crowd_dispersal',
'ignore',
'killings',
'shootings',
'other'}
MM = MM.replace({'crowd dispersal':'crowd_dispersal'})
for resp in responses:
MM['responses_'+resp] = 0
for i in MM.index:
otherFlag = 1
for fld in ['protesterdemand1','protesterdemand2', 'protesterdemand3', 'protesterdemand4']:
if pd.isnull(MM[fld][i]) or MM[fld][i]=='.':
pass
else:
otherFlag = 0
MM.loc[i,'reasons_'+MM[fld][i]] = 1
if otherFlag:
MM.loc[i,'reasons_other'] = MM['protest'][i]
for i in MM.index:
otherFlag = 1
for fld in ['stateresponse1', 'stateresponse2', 'stateresponse3', 'stateresponse4', 'stateresponse5', 'stateresponse6', 'stateresponse7']:
if pd.isnull(MM[fld][i]) or MM[fld][i]=='.':
pass
else:
otherFlag = 0
MM.loc[i,'responses_'+MM[fld][i]] = 1
if otherFlag:
MM.loc[i,'responses_other'] = MM['protest'][i]
MM['protesterviolence'] = MM['protesterviolence'].fillna(int(0)).astype(np.int64)
# # Or
# MM = MM[~MM['protesterviolence'].isnull()]
MM['protest_time'] = MM['protest_time'].dt.days.fillna(int(0)).astype(np.int64)
# # Or
# MM = MM[~MM['protest_time'].isnull()]
# MM['protest_time'] = MM['protest_time'].dt.days.astype(np.int64)
MM['violent_response'] = MM['responses_beatings'] | MM['responses_killings'] | MM['responses_shootings']
MM['success'] = MM['responses_accomodation'].copy()
MM['violence_both'] = MM['violent_response'] | MM['protesterviolence']
MM['violent_protest_time'] = MM['protesterviolence']*MM['protest_time']
MM = MM.drop(['id', 'ccode', 'region', 'protestnumber', 'start', 'end',
'startday', 'startmonth', 'startyear', 'endday', 'endmonth', 'endyear',
'location', 'participants_category',
'participants', 'protesteridentity', 'protesterdemand1',
'protesterdemand2', 'protesterdemand3', 'protesterdemand4',
'stateresponse1', 'stateresponse2', 'stateresponse3', 'stateresponse4',
'stateresponse5', 'stateresponse6', 'stateresponse7', 'sources', 'notes'], axis=1)
MM.to_csv('main_data.csv')
'''Plot the percentage of Violent Protests For Each Protest Reason'''
def viol_percentage_line_plot(data):
'''
Processes the input data and generates a line plot for the violence percentage of each reason.
'''
assert isinstance(data, pd.DataFrame), 'expected loaded dataframe'
# Initializing dataframe
df = data
df = df[['protest', 'protesterviolence', 'reasons_labor', 'reasons_social', 'reasons_land', 'reasons_removal',
'reasons_political', 'reasons_price', 'reasons_policebrutality']] # Calculates percentage of violent protests for each reason
reasons = ['reasons_labor', 'reasons_social', 'reasons_land', 'reasons_removal', 'reasons_political',
'reasons_price', 'reasons_policebrutality']
df_temp = pd.DataFrame()
for reason in reasons:
df_temp[reason] = [round((sum(df['protesterviolence'] & df[reason] > 0))/(sum(df[reason]))*100)] # Reformats and renames the df
df_percentage = df_temp.T
df_percentage.rename(index = {'reasons_social':'social reforms',
'reasons_policebrutality':'police brutality',
'reasons_land':'property',
'reasons_political':'law & politics',
'reasons_labor':'labor rights',
'reasons_price':'inflation',
'reasons_removal':'anti-authoritarian'},
columns = {0:'percentage'},
inplace = True)
df_per = df_percentage # Plotting dimensions
fig_dims = (12, 4)
fig, ax = plt.subplots(figsize = fig_dims, dpi=190)
mpl.style.use("bmh")
# Plotting
sns.color_palette('coolwarm')
clrs = ['grey' if (x < max(df_per['percentage'])) else '#E36C55' for x in df_per['percentage'] ]
mybar = plt.bar(df_per.index, df_per['percentage'])
for bar in mybar:
bar.set_color('grey')
mybar[6].set_color('#E36C55')
mybar[1].set_color('#6A8BEF')
plt.xlabel('Reason', size = 14)
plt.ylabel('Percentage', size = 14)
plt.title('Percentage of Violent Protests For Each Reason', size = 16)
plt.grid(False)
'''Plot the Number of Protests in Kenya from 1990-2020'''
def kenya_line_plot(data):
'''
Processes the data and generates a line plot of the number of protests in Kenya from 1990 to 2020.
'''
assert isinstance(data, pd.DataFrame), 'expected loaded dataframe'
df = data
df_kenya = df[df['country'] == 'Kenya']
df_kenya_yrs = df_kenya.groupby('year').sum()
# Plot of number of protests over the years for Kenya
plt.figure(figsize=(6,4), dpi=190)
kenya_line_plt = sns.lineplot(x = 'year', y = 'protest', data = df_kenya_yrs)
plt.title('Number of Protests in Kenya from 1990-2020', size = 16)
plt.ylabel('protest', size = 14)
plt.xlabel('year', size = 14)
'''Plot the Number of Protests in Kenya for each Reason in Kenya 2015'''
def kenya_bar_plot(data):
'''
Processes the data and generates a bar plot for the number of protests for each reason in Kenya 2015.
'''
df = data
df_kenya = df[df['country'] == 'Kenya']
df_kenya_rzns = df_kenya[['year', 'reasons_social', 'reasons_policebrutality', 'reasons_land',
'reasons_political', 'reasons_labor', 'reasons_price', 'reasons_removal']]
df_kenya_2015 = df_kenya_rzns[df_kenya_rzns['year'] == 2015]
# Creating list for iterable and names for new df
reasons = ['reasons_labor', 'reasons_social', 'reasons_land', 'reasons_removal', 'reasons_political',
'reasons_price', 'reasons_policebrutality']
# Initializing empty df
df_temp = pd.DataFrame()
for reason in reasons:
df_temp[reason] = [sum(df_kenya_2015[reason])]
df_reasons = df_temp.T
df_reasons.rename(index = {'reasons_social':'social reforms',
'reasons_policebrutality':'police brutality',
'reasons_land':'property',
'reasons_political':'law & politics',
'reasons_labor':'labor rights',
'reasons_price':'inflation',
'reasons_removal':'anti-authoritarian'},
columns = {0:'Total Protests'},
inplace = True)
# Plotting dimensions
fig_dims = (12, 4)
fig, ax = plt.subplots(figsize = fig_dims) # Plotting
values = df_reasons['Total Protests']
clrs = ['gray' if (x < max(values)) else '#E36C55' for x in values]
mybar = plt.bar(df_reasons.index, df_reasons['Total Protests'])
for bar in mybar:
bar.set_color("grey")
mybar[0].set_color('#e36c55')
mybar[4].set_color('#e36c55')
plt.xlabel('Reason', size = 14)
plt.ylabel('Occurences', size = 14)
plt.title('Percentage of Violent Protests For Each Reason', size = 16)
plt.grid(False)
'''Plot Violence vs Duration'''
def duration_and_violence(main_data):
'''
Three pie charts related to violence and duration
'''
assert isinstance(main_data, pd.DataFrame), 'expected loaded dataframe'
# process the input file
MM = main_data
violence = MM.sort_values(['country', 'year'])
violence = violence.sort_values(['protest_time'])
violence = violence.drop(['reasons_political', 'reasons_labor', 'reasons_price',
'reasons_land', 'reasons_policebrutality', 'reasons_removal',
'reasons_social', 'reasons_other', 'responses_crowd_dispersal',
'responses_killings', 'responses_beatings', 'responses_shootings',
'responses_arrests', 'responses_ignore', 'responses_accomodation',
'responses_other', 'violent_response', 'success'], axis=1)
violence = violence.sort_values(['protest_time']).drop(['country', 'year',
'protest', 'protesterviolence', 'violent_protest_time'], axis=1)
violence0 = violence.copy()
bins1 = [-1, 0, 10, 950]
index = ['End within 1 day', '1 days to 10 days', 'More than 10 days']
violence0.insert(0, "protest_time_interval", pd.cut(violence0['protest_time'], bins=bins1, labels=index))
violence0 = violence0.dropna(subset=['protest_time_interval'])
violence0['violence'] = np.where(violence0['violence_both'] == 1, 'Violent', 'Nonviolent')
violence0['count'] = 1
# More than 10 days
ten_days_more = violence0[violence0.protest_time_interval == 'More than 10 days']
ten_days_more = ten_days_more.groupby(['violence']).size().reset_index(name='total_count')
# piechart for more than ten days
labels = ten_days_more['violence']
percentages = ten_days_more['total_count']
sns.set_palette("coolwarm")
plt.figure(figsize=(6,4), dpi=190)
col = plt.get_cmap('coolwarm')(np.linspace(.2, .9, len(labels)))
plt.pie(percentages, labels=labels, autopct='%2.1f%%', shadow=True, colors=col)
plt.axis('equal')
plt.title('More than 10 days')
# Within one day
one_day = violence0[violence0.protest_time_interval == 'End within 1 day']
one_day = one_day.groupby(['violence']).size().reset_index(name='total_count')
row = {"violence": "Violent", "total_count": 0}
one_day = one_day.append(row, ignore_index=True)
# pie chart_within one day
labels = one_day['violence']
percentages = one_day['total_count']
sns.set_palette("coolwarm")
plt.figure(figsize=(6,4), dpi=190)
col = plt.get_cmap('coolwarm')(np.linspace(.2, .9, len(labels)))
plt.pie(percentages, labels=labels, autopct='%2.1f%%', shadow=True, colors=col)
plt.axis('equal')
plt.title('Within 1 day')
# 1 day to 10 days
one_to_ten = violence0.copy()
one_to_ten = one_to_ten.groupby(['protest_time_interval', 'violence']).size().reset_index(name='total_count')
one_to_ten = one_to_ten[one_to_ten.protest_time_interval == '1 days to 10 days']
# pie chart for 1 day to 10 days
labels = one_to_ten['violence']
percentages = one_to_ten['total_count']
sns.set_palette("coolwarm")
plt.figure(figsize=(6,4), dpi=190)
col = plt.get_cmap('coolwarm')(np.linspace(.2, .9, len(labels)))
plt.pie(percentages, labels=labels, autopct='%2.1f%%', shadow=True, colors=col)
plt.axis('equal')
plt.title('1 day to 10 days')
'''Plot Response to Violent and Non-Violent protests'''
def violance_response(data):
'''
Two pie charts describing the response to violent and nonviolent events
'''
assert isinstance(data, pd.DataFrame), 'expected loaded dataframe'
df_NoNviolance = data[data.protesterviolence == 0]
df_violance = data[data.protesterviolence == 1]
non_viloance_sum = df_NoNviolance.sum()[['responses_accomodation',
'responses_arrests', 'responses_beatings', 'responses_crowd_dispersal', 'responses_ignore',
'responses_killings', 'responses_shootings']]
viloance_sum = df_violance.sum()[['responses_accomodation',
'responses_arrests', 'responses_beatings', 'responses_crowd_dispersal', 'responses_ignore',
'responses_killings', 'responses_shootings']]
list1 = ['responses_accomodation',
'responses_arrests', 'responses_beatings', 'responses_crowd_dispersal', 'responses_ignore',
'responses_killings', 'responses_shootings']
list_non_violance = []
for key in list1:
list_non_violance.append(non_viloance_sum[key])
# print(list_non_violance)
list_violance = []
for key in list1:
list_violance.append(viloance_sum[key])
# print(list_violance)
labels = 'Accomodation', 'Arrests', 'Beatings', 'Crowd Dispersal', 'Ignore', 'Killings', 'Shooting'
col = ['lightblue','brown','lavenderblush', 'teal', 'darksalmon', 'blueviolet']
plt.figure(figsize=(6,4), dpi=190)
col = plt.get_cmap('coolwarm')(np.linspace(.2, .9, len(labels)))
plt.pie(list_violance, labels=labels, autopct='%1.0f%%', shadow=True, colors=col)
plt.axis('equal')
plt.title('State Responses for Violent Protests')
plt.figure(figsize=(6,4), dpi=190)
col = plt.get_cmap('coolwarm')(np.linspace(.2, .9, len(labels)))
plt.pie(list_non_violance, labels=labels, autopct='%1.0f%%', shadow=True, colors=col)
plt.axis('equal')
plt.title('State Responses for Non-Violent Protests')
'''Plot violence percentage per day'''
def line_percent_violence_day(data):
'''
Line chart of percent violence versus duration
'''
assert isinstance(data, pd.DataFrame), 'expected loaded dataframe'
tmp = dict()
tmp1 = []
tmp2 = []
for x in range(1,8):
Idx = data['protest_time']==x
v_Idx = data['violence_both']>0
if(sum(Idx)==0):
tmp[x]=0
else:
tmp[(x,x+10)]=sum(v_Idx & Idx)/sum(v_Idx)*100
tmp1.append(sum(v_Idx & Idx)/sum(v_Idx)*100)
tmp2.append(x)
plt.figure(figsize=(6,4),dpi=190)
plt.plot(tmp2, tmp1)
plt.xlabel('Number of Days')
plt.ylabel('Percentage of Violence')
plt.title('')
plt.grid(False)
'''Plot success per reason'''
def percent_per_reason_bar(data):
'''
Bar graph of percent success per reason
'''
assert isinstance(data, pd.DataFrame), 'expected loaded dataframe'
list_reasons = ['reasons_social', 'reasons_policebrutality','reasons_land', 'reasons_political', 'reasons_labor','reasons_price', 'reasons_removal']
s_Idx = data['success']>0
labels = ['social reforms', 'police brutality', 'property', 'law & politics', 'labor rights','inflation', 'anti-authoritarian']
s_dist = []
for reason in list_reasons:
Idx = data[reason]>0
s_dist.append(sum(Idx&s_Idx)/sum(Idx)*100)
fig, ax = plt.subplots(figsize=(6,4), dpi=190)
y_pos = np.arange(len(labels))
y_pos = np.linspace(0, 2.5, len(labels))
mybars = ax.barh(y_pos, s_dist, align='center', height=0.3, color=(0.2, 0.4, 0.6, 0.6))
for bar in mybars:
bar.set_color('grey')
mybars[2].set_color('#E36C55')
mybars[3].set_color('#6a8bef')
ax.set_yticks(y_pos)
ax.set_yticklabels(labels)
ax.invert_yaxis() # labels read top-to-bottom
ax.set_xlabel('Percent Successful')
ax.set_ylabel('Reasons')
ax.set_title("Percent of Successful Protests For Each Reason")
plt.grid(False)
def percent_per_duration_bar(data):
'''
Bar graph of percent success per duration
'''
list_d = [(0,1),(1,7),(7,30),(30,365),(365,7000)]
s_Idx = data['success']>0
labels = ['0-1 day','1-7 days','7-30 days','30-365 days','>1 year']
s_dist = []
for a,b in list_d:
Idx1 = data['protest_time']>a
Idx2 = data['protest_time']<=b
s_dist.append(sum(Idx1&Idx2&s_Idx)/sum(Idx1&Idx2)*100)
fig, ax = plt.subplots(figsize=(6,4),dpi=190)
y_pos = np.arange(len(labels))
y_pos = np.linspace(0, 1.5, len(labels))
col = plt.get_cmap('coolwarm')(np.linspace(0.3, 0.3, len(labels)+1))
mybars = ax.barh(y_pos, s_dist, align='center', height=0.3, color=col)
ax.set_yticks(y_pos)
ax.set_yticklabels(labels)
ax.invert_yaxis() # labels read top-to-bottom
ax.set_xlabel('Percent Successful')
ax.set_ylabel('Protest Duration')
ax.set_title("Percent of Successful Protests For Various Durations")
plt.grid(False)
plt.show()
def plot_heatmap(data):
'''
Plot a heatmap of the correlation between reasons and responses
'''
assert isinstance(data, pd.DataFrame), 'expected loaded dataframe'
# feature extraction
useful_data = data[['country','reasons_social', 'reasons_policebrutality',
'reasons_other', 'reasons_land', 'reasons_political', 'reasons_labor',
'reasons_price', 'reasons_removal', 'responses_accomodation',
'responses_arrests', 'responses_shootings', 'responses_other',
'responses_crowd_dispersal', 'responses_beatings', 'responses_killings',
'responses_ignore']].groupby(['country']).sum().reset_index()
# find correlation
correlation = useful_data.corr()
trimmed_correlation = correlation[['reasons_social', 'reasons_policebrutality','reasons_land', 'reasons_political', 'reasons_labor',
'reasons_price', 'reasons_removal']].loc[['responses_accomodation',
'responses_arrests', 'responses_shootings',
'responses_crowd_dispersal', 'responses_beatings', 'responses_killings',
'responses_ignore']]
# ploting the heatmap
plt.figure(figsize = (11,7))
cmp = sns.color_palette("coolwarm", as_cmap=True)
ax = sns.heatmap(trimmed_correlation.T, annot = True, cmap = cmp, cbar=True, xticklabels=['accomodation', 'detentions', 'shootings', 'crowd dispersal', 'assault', 'deaths','indifference'], yticklabels=['social reforms', 'police brutality', 'property', 'law & politics', 'labor rights','inflation', 'anti-authoritarian'])
plt.ylabel('Reasons',fontsize='x-large')
plt.xlabel('Responses',fontsize='x-large')
plt.xticks(fontweight='roman')
plt.yticks(fontweight='roman')
def plot_success_stats(data):
'''
Plot of success rates violence/nonviolence circle
'''
assert isinstance(data, pd.DataFrame), 'expected loaded dataframe'
success_Idx = data['success']>0
violent_Idx = data['violence_both']>0
violent_success = sum(violent_Idx & success_Idx)/sum(success_Idx)*100
sizes = [violent_success, 100-violent_success]
labels = ['violent', 'non-violent']
color_palette = plt.get_cmap('coolwarm')(
np.linspace(0.1, 0.9, len(labels)))
plt.figure(figsize=(12,7))
plt.pie(sizes, labels=labels, shadow=True, colors=color_palette, textprops={'fontsize': 'x-large'})
plt.axis('equal')
central_circle=plt.Circle( (0,0), 0.6, color='white')
p=plt.gcf()
p.gca().add_artist(central_circle)
plt.text(0, 0, 'Success', ha='center', fontsize='xx-large')
plt.show()
def plot_ignored_stats(data):
'''
Circle plot of ignore rate violent vs nonviolent
'''
assert isinstance(data, pd.DataFrame), 'expected loaded dataframe'
ignored_Idx = data['responses_ignore']>0
violent_Idx = data['violence_both']>0
violent_ignored = sum(violent_Idx & ignored_Idx)/sum(ignored_Idx)*100
sizes = [violent_ignored, 100-violent_ignored]
labels = ['violent', 'non-violent']
color_palette = plt.get_cmap('coolwarm')(
np.linspace(0.1, 0.9, len(labels)))
plt.figure(figsize=(12,7))
plt.pie(sizes, labels=labels, shadow=True, colors=color_palette, textprops={'fontsize': 'x-large'})
plt.axis('equal')
central_circle=plt.Circle( (0,0), 0.6, color='white')
p=plt.gcf()
p.gca().add_artist(central_circle)
plt.text(0, 0, 'Ignorance', ha='center', fontsize='xx-large')
plt.show()
def plot_reasons(data):
'''
Plot of the reasons in the dataset
'''
assert isinstance(data, pd.DataFrame), 'expected loaded dataframe'
summed_data = data.sum()
reasons_list = ['reasons_social','reasons_policebrutality','reasons_land','reasons_political','reasons_labor','reasons_price','reasons_removal']
score_reasons = [summed_data[reason] for reason in reasons_list]
score_reasons = [784, 1101, 602, 3750, 1511, 1214, 1689]
category_names = ['social', 'police brutality', 'property', 'law & politics', 'labor rights', 'inflation', 'anti-authoritarian']
results = {"":score_reasons}
labels = list(results.keys())
data = np.array(list(results.values()))
data_cum = data.cumsum(axis=1)
category_colors = plt.get_cmap('mako_r')(np.linspace(0.15, 0.85, data.shape[1]))
fig, ax = plt.subplots(figsize=(35, 3))
ax.invert_yaxis()
ax.xaxis.set_visible(False)
ax.set_xlim(0, np.sum(data, axis=1).max())
for i, (colname, color) in enumerate(zip(category_names, category_colors)):
widths = data[:, i]
starts = data_cum[:, i] - widths
ax.barh(labels, widths, left=starts, height=0.5,label=colname, color=color)
xcenters = starts + widths / 2
r, g, b, _ = color
text_color = 'white'
for y, (x, c) in enumerate(zip(xcenters, widths)):
ax.text(x, y, category_names[i], ha='center', va='center',
color=text_color, fontsize=20, fontweight='bold', fontname='Gill Sans MT')
ax.axis('off')
plt.show()
def plot_responses(data):
'''
Plot of responses in the dataset
'''
assert isinstance(data, pd.DataFrame), 'expected loaded dataframe'
summed_data = data.sum()
responses_list = ['responses_arrests', 'responses_shootings', 'responses_crowd_dispersal', 'responses_beatings', 'responses_killings','responses_ignore', 'success']
score_responses = [summed_data[response] for response in responses_list]
score_responses = [2149, 1200, 3072, 900, 1000, 5285, 1027]
category_names = ['detentions', 'shootings', 'crowd dispersal', 'assault', 'deaths', 'indifference', 'success']
results = {"":score_responses}
labels = list(results.keys())
data = np.array(list(results.values()))
data_cum = data.cumsum(axis=1)
category_colors = plt.get_cmap('flare')(np.linspace(0.15, 0.85, data.shape[1]))
fig, ax = plt.subplots(figsize=(35, 3))
ax.invert_yaxis()
ax.xaxis.set_visible(False)
ax.set_xlim(0, np.sum(data, axis=1).max())
for i, (colname, color) in enumerate(zip(category_names, category_colors)):
widths = data[:, i]
starts = data_cum[:, i] - widths
ax.barh(labels, widths, left=starts, height=0.5,label=colname, color=color)
xcenters = starts + widths / 2
r, g, b, _ = color
text_color = 'white'
for y, (x, c) in enumerate(zip(xcenters, widths)):
ax.text(x, y, category_names[i], ha='center', va='center',
color=text_color, fontsize=20, fontweight='bold', fontname='Gill Sans MT')
ax.axis('off')
plt.show()
def plot_worldmap(data_here):
'''
Plot of the 25 highest and 25 lowest countries in
terms of protest occurrences
'''
assert isinstance(data_here, pd.DataFrame), 'expected loaded dataframe'
data = data_here.copy()
# copy necessitated because non-existent countries are changed
data['country'] = data['country'].replace(['United Arab Emirate'], 'United Arab Emirates')
data['country'] = data['country'].replace(['USSR'], 'Russia')
data['country'] = data['country'].replace(['Germany West','Germany East'], 'Germany')
data['country'] = data['country'].replace(['Yugoslavia'], 'Croatia')
data['country'] = data['country'].replace(['Czechoslovakia'], 'Slovakia')
data['country'] = data['country'].replace(['Bosnia'], 'Bosnia and Herzegovina')
data['country'] = data['country'].replace(['Serbia and Montenegro', 'Kosovo'], 'Serbia')
data['country'] = data['country'].replace(['Congo Kinshasa', 'Congo Brazzaville'], 'Congo')
data['country'] = data['country'].replace(['South Sudan', 'North Sudan'], 'Sudan')
processed_data = data[['country','protest']].groupby('country').sum().sort_values('protest')
reverse_country_map = {v:k for k,v in COUNTRIES.items()}
most_protests = []
for x in processed_data[-25:].iterrows():
try:
most_protests.append(reverse_country_map[x[0]])
except:
pass
least_protests = []
for x in processed_data[:25].iterrows():
try:
least_protests.append(reverse_country_map[x[0]])
except:
pass
worldmap_chart = pygal.maps.world.World()
worldmap_chart.title = 'Outliers of the World'
worldmap_chart.add('Most Protests', most_protests)
worldmap_chart.add('Least Protests', least_protests)
worldmap_chart.render_in_browser()