-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
28 lines (22 loc) · 845 Bytes
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from transformers import pipeline
from flask import Flask, request, jsonify, render_template
# initialize sentiment model
classifier = pipeline('sentiment-analysis', model='distilbert-base-uncased-finetuned-sst-2-english')
# get sentiment
def sentiment_prediction(sentence):
return classifier(sentence)
# initialize Flask app
app = Flask(__name__)
# creating endpoints
@app.route('/')
def home():
return render_template('index.html')
@app.route('/predict', methods=['POST'])
def predict():
sentence = str(request.form['sentence'])
response = sentiment_prediction(sentence)[0]
label = response['label']
score = response['score']
return render_template('index.html', prediction_text=f'Sentiment predicted is {label} with probability {score}')
if __name__ == '__main__':
app.run(host = '0.0.0.0', port = 3000)