-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1038_Binary_Search_Tree_to_Greater_Sum_Tree.cpp
60 lines (54 loc) · 1.53 KB
/
1038_Binary_Search_Tree_to_Greater_Sum_Tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
/*
Given the root of a binary search tree with distinct values, modify it so that every node has a new value equal to the sum of the values of the original tree that are greater than or equal to node.val.
As a reminder, a binary search tree is a tree that satisfies these constraints:
The left subtree of a node contains only nodes with keys less than the node's key.
The right subtree of a node contains only nodes with keys greater than the node's key.
Both the left and right subtrees must also be binary search trees.
Note:
The number of nodes in the tree is between 1 and 100.
Each node will have value between 0 and 100.
The given tree is a binary search tree.
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
#define NULL 0
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
class Solution {
private:
TreeNode* bstToGst(TreeNode* root, int& sum, int& pre){
if(NULL==root){
sum = 0;
return NULL;
}
TreeNode* res = new TreeNode(root->val+pre);
// right
int sum_r;
res->right = bstToGst(root->right, sum_r, pre);
// node
res->val += sum_r;
// left
int sum_l;
res->left = bstToGst(root->left, sum_l, res->val);
// sum
sum = sum_r + root->val + sum_l;
// return
return res;
}
public:
TreeNode* bstToGst(TreeNode* root) {
int sum, pre = 0;
return bstToGst(root, sum, pre);
}
};