-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path124_Binary_Tree_Maximum_Path_Sum.cpp
77 lines (66 loc) · 1.52 KB
/
124_Binary_Tree_Maximum_Path_Sum.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
/*
Given a non-empty binary tree, find the maximum path sum.
For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path must contain at least one node and does not need to go through the root.
Example 1:
Input: [1,2,3]
1
/ \
2 3
Output: 6
Example 2:
Input: [-10,9,20,null,null,15,7]
-10
/ \
9 20
/ \
15 7
Output: 42
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
#include <algorithm>
#include <limits.h>
using namespace std;
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
class Solution {
private:
int maxPathSum(TreeNode* root, int& max_sum){
if(NULL==root){
return 0;
}
//left
int left_sum = maxPathSum(root->left, max_sum);
//right
int right_sum = maxPathSum(root->right, max_sum);
//self
//max_sum
int temp_sum = 0;
if(left_sum>0) temp_sum += left_sum;
if(right_sum>0) temp_sum += right_sum;
temp_sum += root->val;
max_sum = max(max_sum, temp_sum);
//max_path_sum
int max_path_sum = max(root->val + left_sum, root->val + right_sum);
max_path_sum = max(max_path_sum, root->val);
//return
return max_path_sum;
}
public:
int maxPathSum(TreeNode* root) {
int res = INT_MIN;
maxPathSum(root, res);
return res;
}
};