-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1305_All_Elements_in_Two_Binary_Search_Trees.cpp
127 lines (108 loc) · 2.46 KB
/
1305_All_Elements_in_Two_Binary_Search_Trees.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
/*
Given two binary search trees root1 and root2.
Return a list containing all the integers from both trees sorted in ascending order.
Example 1:
Input: root1 = [2,1,4], root2 = [1,0,3]
Output: [0,1,1,2,3,4]
Example 2:
Input: root1 = [0,-10,10], root2 = [5,1,7,0,2]
Output: [-10,0,0,1,2,5,7,10]
Example 3:
Input: root1 = [], root2 = [5,1,7,0,2]
Output: [0,1,2,5,7]
Example 4:
Input: root1 = [0,-10,10], root2 = []
Output: [-10,0,10]
Example 5:
Input: root1 = [1,null,8], root2 = [8,1]
Output: [1,1,8,8]
Constraints:
Each tree has at most 5000 nodes.
Each node's value is between [-10^5, 10^5].
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/all-elements-in-two-binary-search-trees
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
*/
#include <vector>
#include <stack>
using namespace std;
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
class Solution {
public:
vector<int> getAllElements(TreeNode* root1, TreeNode* root2) {
vector<int> res;
stack<TreeNode*> s_p1, s_p2;
stack<bool> s_v1, s_v2;
if(root1){
s_p1.push(root1); s_v1.push(false);
}
if(root2){
s_p2.push(root2); s_v2.push(false);
}
while( (!s_p1.empty())||(!s_p2.empty()) ){
// get the next element
if(!s_p1.empty()){
while(!s_v1.top()){
TreeNode* tmp = s_p1.top(); s_p1.pop();
s_v1.pop();
// right
if(tmp->right){
s_p1.push(tmp->right);
s_v1.push(false);
}
// self
s_p1.push(tmp);
s_v1.push(true);
// left
if(tmp->left){
s_p1.push(tmp->left);
s_v1.push(false);
}
}
}
if(!s_p2.empty()){
while(!s_v2.top()){
TreeNode* tmp = s_p2.top(); s_p2.pop();
s_v2.pop();
// right
if(tmp->right){
s_p2.push(tmp->right);
s_v2.push(false);
}
// self
s_p2.push(tmp);
s_v2.push(true);
// left
if(tmp->left){
s_p2.push(tmp->left);
s_v2.push(false);
}
}
}
// compare
if(s_p1.empty()){
res.push_back(s_p2.top()->val);
s_p2.pop(); s_v2.pop();
}
else if(s_p2.empty()){
res.push_back(s_p1.top()->val);
s_p1.pop(); s_v1.pop();
}
else if(s_p1.top()->val<=s_p2.top()->val){
res.push_back(s_p1.top()->val);
s_p1.pop(); s_v1.pop();
}
else{
res.push_back(s_p2.top()->val);
s_p2.pop(); s_v2.pop();
}
}
return res;
}
};