Save your (keras/tf) model:
model.compile(...)
model.fit(...)
model.save("/path/to/your/model/folder/")
of you can use tf.saved_model.save
method to save object in SavedModel format at low-level:
tf.saved_model.save(model, export_dir)
Get model input:
$ saved_model_cli show --tag_set serve --signature_def serving_default --dir model/
output:
The given SavedModel SignatureDef contains the following input(s):
inputs['dense_input'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 4)
name: serving_default_dense_input:0
The given SavedModel SignatureDef contains the following output(s):
outputs['dense_1'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 1)
name: StatefulPartitionedCall:0
Method name is: tensorflow/serving/predict
The name of input and output tensors are serving_default_dense_input
and StatefulPartitionedCall
, respectively
You can also use --all
argument to get all information, like this:
MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:
signature_def['__saved_model_init_op']:
The given SavedModel SignatureDef contains the following input(s):
The given SavedModel SignatureDef contains the following output(s):
outputs['__saved_model_init_op'] tensor_info:
dtype: DT_INVALID
shape: unknown_rank
name: NoOp
Method name is:
signature_def['serving_default']:
The given SavedModel SignatureDef contains the following input(s):
inputs['args_0'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 394)
name: serving_default_args_0:0
inputs['args_0_1'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 99)
name: serving_default_args_0_1:0
The given SavedModel SignatureDef contains the following output(s):
outputs['out_1'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 394)
name: StatefulPartitionedCall:0
outputs['out_2'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 99)
name: StatefulPartitionedCall:1
Method name is: tensorflow/serving/predict
...
Load model
const std::string export_dir = "/path/to/your/model/folder/";
tensorflow::SavedModelBundle model_bundle;
tensorflow::SessionOptions session_options = tensorflow::SessionOptions();
tensorflow::RunOptions run_options = tensorflow::RunOptions();
tensorflow::Status status = tensorflow::LoadSavedModel(session_options, run_options, export_dir, {tensorflow::kSavedModelTagServe},
&model_bundle);
if (status.ok()) {
std::cout << "Session successfully loaded: " << status;
}
else {
std::cerr << "Failed: " << status;
}
auto sig_map = model_bundle.GetSignatures();
auto model_def = sig_map.at("serving_default");
printf("\nModel Signature\n");
for (auto const& p : sig_map) {
printf("key: %s\n", p.first.c_str());
}
printf("Model Input Nodes\n");
for (auto const& p : model_def.inputs()) {
printf("key: %s value: %s\n", p.first.c_str(), p.second.name().c_str());
}
printf("Model Output Nodes\n");
for (auto const& p : model_def.outputs()) {
printf("key: %s value: %s\n", p.first.c_str(), p.second.name().c_str());
}