-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase_dqn.py
74 lines (62 loc) · 2.35 KB
/
base_dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# base_dqn.py
import random
import torch
import torch.nn as nn
import torch.optim as optim
from memory import Memory
from data import Data
class BaseDQN:
def __init__(
self,
num_states,
num_actions,
network_class,
gamma=0.98,
epsilon=1.0,
epsilon_min=0.01,
epsilon_decay=1000,
batch_size=64,
target_update=10,
learning_rate=0.00025,
memory_capacity=10000
):
self.num_actions = num_actions
self.gamma = gamma
self.epsilon = epsilon
self.epsilon_min = epsilon_min
self.epsilon_decay = epsilon_decay
self.batch_size = batch_size
self.target_update = target_update
self.learn_step_counter = 0
self.memory_counter = 0
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.eval_net = network_class(num_states, num_actions).to(self.device)
self.target_net = network_class(num_states, num_actions).to(self.device)
self.target_net.load_state_dict(self.eval_net.state_dict())
self.target_net.eval()
self.optimizer = optim.Adam(self.eval_net.parameters(), lr=learning_rate)
self.loss_func = nn.MSELoss()
self.memory = Memory(capacity=memory_capacity)
def choose_action(self, state):
if random.random() > self.epsilon:
state = torch.tensor(state, dtype=torch.float).unsqueeze(0).to(self.device)
with torch.no_grad():
q_values = self.eval_net(state)
action = torch.argmax(q_values).item()
else:
action = random.randint(0, self.num_actions - 1)
return action
def store_transition(self, data):
self.memory.push(data)
self.memory_counter += 1
def update_epsilon(self):
if self.epsilon > self.epsilon_min:
self.epsilon -= (1.0 - self.epsilon_min) / self.epsilon_decay
self.epsilon = max(self.epsilon, self.epsilon_min)
def save_model(self, path):
torch.save(self.eval_net.state_dict(), path)
def load_model(self, path):
self.eval_net.load_state_dict(torch.load(path, map_location=self.device))
self.target_net.load_state_dict(self.eval_net.state_dict())
def learn(self):
raise NotImplementedError("The learn method must be implemented by subclasses")