-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbert_classification.py
32 lines (27 loc) · 1.25 KB
/
bert_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import torch
import torch.nn as nn
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import pdb
# class BertClassification(nn.Module):
# """
# Wrapper class for BertForSequenceClassification
# """
# def __init__(self):
# super(BertClassification, self).__init__()
# self.tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
# self.model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased')
# self.hidden_size = self.model.config.hidden_size
# self.num_hidden_layers = self.model.config.num_hidden_layers
# self.num_attention_heads = self.model.config.num_hidden_layers
# def prune_heads(heads_to_prune):
# self.model.prune_heads(heads_to_prune)
# def forward(self, example, **kwargs):
# model_input = self.format_for_input(example)
# out = self.model(**model_input, **kwargs)
# return out
def bert_classifier():
model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased')
setattr(model, 'num_hidden_layers', model.config.num_hidden_layers)
setattr(model, 'num_attention_heads', model.config.num_attention_heads)
setattr(model, 'hidden_size', model.config.hidden_size)
return model