|
31 | 31 |
|
32 | 32 |
|
33 | 33 | def main():
|
| 34 | + nClasses = 5 |
| 35 | + nFeatures = 6 |
| 36 | + |
34 | 37 | # read training data from file with 6 features per observation and 1 class label
|
35 | 38 | trainfile = "./data/batch/logreg_train.csv"
|
36 |
| - train_data = read_csv(trainfile, range(6)) |
37 |
| - train_dep_data = read_csv(trainfile, range(6, 7)) |
38 |
| - nVectors = train_data.shape[0] |
39 |
| - train_dep_data.shape = (nVectors, 1) # must be a 2d array |
| 39 | + train_data = read_csv(trainfile, range(nFeatures)) |
| 40 | + train_labels = read_csv(trainfile, range(nFeatures, nFeatures + 1)) |
| 41 | + train_labels.shape = (train_data.shape[0], 1) # must be a 2d array |
40 | 42 |
|
41 | 43 | # set parameters and train
|
42 |
| - train_alg = d4p.logistic_regression_training(nClasses=5, |
| 44 | + train_alg = d4p.logistic_regression_training(nClasses=nClasses, |
43 | 45 | penaltyL1=0.1,
|
44 | 46 | penaltyL2=0.1)
|
45 |
| - train_result = train_alg.compute(train_data, train_dep_data) |
| 47 | + train_result = train_alg.compute(train_data, train_labels) |
46 | 48 |
|
47 | 49 | # read testing data from file with 6 features per observation
|
48 | 50 | testfile = "./data/batch/logreg_test.csv"
|
49 |
| - predict_data = read_csv(testfile, range(6)) |
| 51 | + predict_data = read_csv(testfile, range(nFeatures)) |
50 | 52 |
|
51 | 53 | # set parameters and compute predictions
|
52 |
| - predict_alg = d4p.logistic_regression_prediction(nClasses=5, |
| 54 | + predict_alg = d4p.logistic_regression_prediction(nClasses=nClasses, |
53 | 55 | resultsToCompute="computeClassesLabels|computeClassesProbabilities|computeClassesLogProbabilities")
|
54 | 56 | predict_result = predict_alg.compute(predict_data, train_result.model)
|
55 | 57 |
|
56 |
| - # the prediction result provides prediction, classes probabilities and classes log probabilities |
57 |
| - assert predict_result.prediction.shape == (predict_data.shape[0], train_dep_data.shape[1]) \ |
58 |
| - and predict_result.probabilities.shape == (predict_data.shape[0], 5) \ |
59 |
| - and predict_result.logProbabilities.shape == (predict_data.shape[0], 5) |
| 58 | + # the prediction result provides prediction, probabilities and logProbabilities |
| 59 | + assert predict_result.prediction.shape == (predict_data.shape[0], train_labels.shape[1]) |
| 60 | + assert predict_result.probabilities.shape == (predict_data.shape[0], nClasses) |
| 61 | + assert predict_result.logProbabilities.shape == (predict_data.shape[0], nClasses) |
60 | 62 |
|
61 | 63 |
|
62 | 64 | if __name__ == "__main__":
|
|
0 commit comments