You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+8-8
Original file line number
Diff line number
Diff line change
@@ -36,14 +36,14 @@ MRI radiomics and machine learning model to predict risk group in endometrial ca
36
36
37
37
## Select Publications
38
38
39
-
1. Kocak B, Baessler B, Bakas S, et al (2023) CheckList for EvaluAtion of Radiomics research (CLEAR): a step-by-step reporting guideline for authors and reviewers endorsed by ESR and EuSoMII. Insights Imaging 14:75. [https://doi.org/10.1186/s13244-023-01415-8](https://doi.org/10.1186/s13244-023-01415-8)
40
-
2.Spadarella G, Stanzione A, Akinci D’Antonoli T, et al (2023) Systematic review of the radiomics quality score applications: an EuSoMII Radiomics Auditing Group Initiative. Eur Radiol. [https://doi.org/10.1007/s00330-022-09187-3](https://doi.org/10.1007/s00330-022-09187-3)
41
-
3.Gitto S, Cuocolo R, van Langevelde K, et al (2022) MRI radiomics-based machine learning classification of atypical cartilaginous tumour and grade II chondrosarcoma of long bones. EBioMedicine. [https://doi.org/10.1016/j.ebiom.2021.103757](https://doi.org/10.1016/j.ebiom.2021.103757)
42
-
4.Romeo V, Cuocolo R, Apolito R, et al (2021) Clinical value of radiomics and machine learning in breast ultrasound: a multicenter study for differential diagnosis of benign and malignant lesions. Eur Radiol. [https://doi.org/10.1007/s00330-021-08009-2](https://doi.org/10.1007/s00330-021-08009-2)
43
-
5.Cuocolo R, Stanzione A, Faletti R, et al (2021) MRI index lesion radiomics and machine learning for detection of extraprostatic extension of disease: a multicenter study. Eur Radiol. [https://doi.org/10.1007/s00330-021-07856-3](https://doi.org/10.1007/s00330-021-07856-3)
44
-
6. Cuocolo R, Comelli A, Stefano A, et al (2021) Deep Learning Whole‐Gland and Zonal Prostate Segmentation on a Public MRI Dataset. J Magn Reson Imaging. [https://doi.org/10.1002/jmri.27585](https://doi.org/10.1002/jmri.27585)
45
-
7. Cuocolo R, Cipullo MB, Stanzione A, et al (2020). Machine learning for the identification of clinically significant prostate cancer on MRI: a meta-analysis. Eur Radiol. [https://doi.org/10.1007/s00330-020-07027-w](https://doi.org/10.1007/s00330-020-07027-w)
46
-
8.Stanzione A, Gambardella M, Cuocolo R, et al (2020). Prostate MRI radiomics: A systematic review and radiomic quality score assessment. Eur J Radiol. [https://doi.org/10.1016/j.ejrad.2020.109095](https://doi.org/10.1016/j.ejrad.2020.109095)
39
+
1. Kocak B, Akinci D’Antonoli T, Mercaldo N, et al (2024) METhodological RadiomICs Score (METRICS): a quality scoring tool for radiomics research endorsed by EuSoMII. Insights Imaging 15:8. [https://doi.org/10.1186/s13244-023-01572-w](https://doi.org/10.1186/s13244-023-01572-w)
40
+
2.Kocak B, Baessler B, Bakas S, et al (2023) CheckList for EvaluAtion of Radiomics research (CLEAR): a step-by-step reporting guideline for authors and reviewers endorsed by ESR and EuSoMII. Insights Imaging 14:75. [https://doi.org/10.1186/s13244-023-01415-8](https://doi.org/10.1186/s13244-023-01415-8)
41
+
3.Spadarella G, Stanzione A, Akinci D’Antonoli T, et al (2023) Systematic review of the radiomics quality score applications: an EuSoMII Radiomics Auditing Group Initiative. Eur Radiol. [https://doi.org/10.1007/s00330-022-09187-3](https://doi.org/10.1007/s00330-022-09187-3)
42
+
4.Gitto S, Cuocolo R, van Langevelde K, et al (2022) MRI radiomics-based machine learning classification of atypical cartilaginous tumour and grade II chondrosarcoma of long bones. EBioMedicine. [https://doi.org/10.1016/j.ebiom.2021.103757](https://doi.org/10.1016/j.ebiom.2021.103757)
43
+
5.Romeo V, Cuocolo R, Apolito R, et al (2021) Clinical value of radiomics and machine learning in breast ultrasound: a multicenter study for differential diagnosis of benign and malignant lesions. Eur Radiol. [https://doi.org/10.1007/s00330-021-08009-2](https://doi.org/10.1007/s00330-021-08009-2)
44
+
6. Cuocolo R, Stanzione A, Faletti R, et al (2021) MRI index lesion radiomics and machine learning for detection of extraprostatic extension of disease: a multicenter study. Eur Radiol. [https://doi.org/10.1007/s00330-021-07856-3](https://doi.org/10.1007/s00330-021-07856-3)
45
+
7. Cuocolo R, Comelli A, Stefano A, et al (2021) Deep Learning Whole‐Gland and Zonal Prostate Segmentation on a Public MRI Dataset. J Magn Reson Imaging. [https://doi.org/10.1002/jmri.27585](https://doi.org/10.1002/jmri.27585)
46
+
8.Cuocolo R, Cipullo MB, Stanzione A, et al (2020). Machine learning for the identification of clinically significant prostate cancer on MRI: a meta-analysis. Eur Radiol. [https://doi.org/10.1007/s00330-020-07027-w](https://doi.org/10.1007/s00330-020-07027-w)
47
47
9. Cuocolo R, Caruso M, Perillo T, et al (2020) Machine Learning in Oncology: A Clinical Appraisal. Cancer Lett. [https://doi.org/10.1016/j.canlet.2020.03.032](https://doi.org/10.1016/j.canlet.2020.03.032)
48
48
10. Imbriaco M, Cuocolo R (2018). Does Texture Analysis of MR Images of Breast Tumors Help Predict Response to Treatment? Radiology. [https://doi.org/10.1148/radiol.2017172454](https://doi.org/10.1148/radiol.2017172454)
0 commit comments