forked from intel/llvm
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathurMultiDeviceProgramCreateWithBinary.cpp
386 lines (337 loc) · 15.5 KB
/
urMultiDeviceProgramCreateWithBinary.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
// Copyright (C) 2024 Intel Corporation
// Part of the Unified-Runtime Project, under the Apache License v2.0 with LLVM
// Exceptions. See LICENSE.TXT
//
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
#include "uur/known_failure.h"
#include <uur/fixtures.h>
#include <uur/raii.h>
struct urMultiDeviceProgramCreateWithBinaryTest
: uur::urMultiDeviceProgramTest {
void SetUp() override {
UUR_RETURN_ON_FATAL_FAILURE(urMultiDeviceProgramTest::SetUp());
// First obtain binaries for all devices from the compiled SPIRV program.
ASSERT_SUCCESS(urProgramBuild(context, program, nullptr));
size_t binary_sizes_len = 0;
ASSERT_SUCCESS(urProgramGetInfo(program, UR_PROGRAM_INFO_BINARY_SIZES, 0,
nullptr, &binary_sizes_len));
// We're expecting number of binaries equal to number of devices.
ASSERT_EQ(binary_sizes_len / sizeof(size_t), devices.size());
binary_sizes.resize(devices.size());
binaries.resize(devices.size());
ASSERT_SUCCESS(urProgramGetInfo(program, UR_PROGRAM_INFO_BINARY_SIZES,
binary_sizes.size() * sizeof(size_t),
binary_sizes.data(), nullptr));
for (size_t i = 0; i < devices.size(); i++) {
size_t binary_size = binary_sizes[i];
binaries[i].resize(binary_size);
pointers.push_back(binaries[i].data());
}
ASSERT_SUCCESS(urProgramGetInfo(program, UR_PROGRAM_INFO_BINARIES,
sizeof(uint8_t *) * pointers.size(),
pointers.data(), nullptr));
// Now create a program with multiple device binaries.
ASSERT_SUCCESS(urProgramCreateWithBinary(
context, devices.size(), devices.data(), binary_sizes.data(),
pointers.data(), nullptr, &binary_program));
}
void TearDown() override {
if (binary_program) {
EXPECT_SUCCESS(urProgramRelease(binary_program));
}
UUR_RETURN_ON_FATAL_FAILURE(urMultiDeviceProgramTest::TearDown());
}
std::vector<std::vector<uint8_t>> binaries;
std::vector<const uint8_t *> pointers;
std::vector<size_t> binary_sizes;
ur_program_handle_t binary_program = nullptr;
};
UUR_INSTANTIATE_PLATFORM_TEST_SUITE(urMultiDeviceProgramCreateWithBinaryTest);
// Create the kernel using the program created with multiple binaries and run it
// on all devices.
TEST_P(urMultiDeviceProgramCreateWithBinaryTest,
CreateAndRunKernelOnAllDevices) {
constexpr size_t global_offset = 0;
constexpr size_t n_dimensions = 1;
constexpr size_t global_size = 100;
constexpr size_t local_size = 100;
auto kernelName =
uur::KernelsEnvironment::instance->GetEntryPointNames("foo")[0];
for (size_t i = 1; i < devices.size(); i++) {
uur::raii::Kernel kernel;
ASSERT_SUCCESS(urProgramBuild(context, binary_program, nullptr));
ASSERT_SUCCESS(
urKernelCreate(binary_program, kernelName.data(), kernel.ptr()));
ASSERT_SUCCESS(urEnqueueKernelLaunch(queues[i], kernel.get(), n_dimensions,
&global_offset, &local_size,
&global_size, 0, nullptr, nullptr));
ASSERT_SUCCESS(urQueueFinish(queues[i]));
}
}
TEST_P(urMultiDeviceProgramCreateWithBinaryTest, CheckCompileAndLink) {
// TODO: Current behaviour is that we allow to compile only IL programs for
// Level Zero and link only programs in Object state. OpenCL allows to compile
// and link programs created from native binaries, so probably we should align
// those two.
ur_platform_backend_t backend;
ASSERT_SUCCESS(urPlatformGetInfo(platform, UR_PLATFORM_INFO_BACKEND,
sizeof(backend), &backend, nullptr));
if (backend == UR_PLATFORM_BACKEND_LEVEL_ZERO) {
ASSERT_EQ(urProgramCompile(context, binary_program, nullptr),
UR_RESULT_ERROR_INVALID_OPERATION);
uur::raii::Program linked_program;
ASSERT_EQ(urProgramLink(context, 1, &binary_program, nullptr,
linked_program.ptr()),
UR_RESULT_ERROR_INVALID_OPERATION);
} else if (backend == UR_PLATFORM_BACKEND_OPENCL) {
ASSERT_SUCCESS(urProgramCompile(context, binary_program, nullptr));
uur::raii::Program linked_program;
ASSERT_SUCCESS(urProgramLink(context, 1, &binary_program, nullptr,
linked_program.ptr()));
} else {
GTEST_SKIP();
}
}
TEST_P(urMultiDeviceProgramCreateWithBinaryTest,
InvalidProgramBinaryForOneOfTheDevices) {
std::vector<const uint8_t *> pointers_with_invalid_binary;
for (size_t i = 1; i < devices.size(); i++) {
pointers_with_invalid_binary.push_back(nullptr);
}
uur::raii::Program invalid_bin_program;
ASSERT_EQ(urProgramCreateWithBinary(context, devices.size(), devices.data(),
binary_sizes.data(),
pointers_with_invalid_binary.data(),
nullptr, invalid_bin_program.ptr()),
UR_RESULT_ERROR_INVALID_VALUE);
}
// Test the case when program is built multiple times for different devices from
// context.
TEST_P(urMultiDeviceProgramCreateWithBinaryTest, MultipleBuildCalls) {
// Run test only for level zero backend which supports urProgramBuildExp.
ur_platform_backend_t backend;
ASSERT_SUCCESS(urPlatformGetInfo(platform, UR_PLATFORM_INFO_BACKEND,
sizeof(backend), &backend, nullptr));
if (backend != UR_PLATFORM_BACKEND_LEVEL_ZERO) {
GTEST_SKIP();
}
auto first_subset = std::vector<ur_device_handle_t>(
devices.begin(), devices.begin() + devices.size() / 2);
auto second_subset = std::vector<ur_device_handle_t>(
devices.begin() + devices.size() / 2, devices.end());
ASSERT_SUCCESS(urProgramBuildExp(binary_program, first_subset.size(),
first_subset.data(), nullptr));
auto kernelName =
uur::KernelsEnvironment::instance->GetEntryPointNames("foo")[0];
uur::raii::Kernel kernel;
ASSERT_SUCCESS(
urKernelCreate(binary_program, kernelName.data(), kernel.ptr()));
ASSERT_SUCCESS(urProgramBuildExp(binary_program, second_subset.size(),
second_subset.data(), nullptr));
ASSERT_SUCCESS(
urKernelCreate(binary_program, kernelName.data(), kernel.ptr()));
// Building for the same subset of devices should not fail.
ASSERT_SUCCESS(urProgramBuildExp(binary_program, first_subset.size(),
first_subset.data(), nullptr));
}
// Test the case we get native binaries from program created with multiple
// binaries which wasn't built (i.e. in Native state).
TEST_P(urMultiDeviceProgramCreateWithBinaryTest,
GetBinariesAndSizesFromProgramInNativeState) {
size_t exp_binary_sizes_len = 0;
std::vector<size_t> exp_binary_sizes;
std::vector<std::vector<uint8_t>> exp_binaries;
std::vector<const uint8_t *> exp_pointer;
ASSERT_SUCCESS(urProgramGetInfo(binary_program, UR_PROGRAM_INFO_BINARY_SIZES,
0, nullptr, &exp_binary_sizes_len));
auto num = exp_binary_sizes_len / sizeof(size_t);
exp_binary_sizes.resize(num);
exp_binaries.resize(num);
exp_pointer.resize(num);
ASSERT_SUCCESS(urProgramGetInfo(binary_program, UR_PROGRAM_INFO_BINARY_SIZES,
exp_binary_sizes.size() * sizeof(size_t),
exp_binary_sizes.data(), nullptr));
for (size_t i = 0; i < devices.size(); i++) {
size_t binary_size = exp_binary_sizes[i];
exp_binaries[i].resize(binary_size);
exp_pointer[i] = exp_binaries[i].data();
}
ASSERT_SUCCESS(urProgramGetInfo(program, UR_PROGRAM_INFO_BINARIES,
sizeof(uint8_t *) * exp_pointer.size(),
exp_pointer.data(), nullptr));
// Verify that we get exactly what was provided at the creation step.
ASSERT_EQ(exp_binaries, binaries);
ASSERT_EQ(exp_binary_sizes, binary_sizes);
}
TEST_P(urMultiDeviceProgramCreateWithBinaryTest, GetIL) {
size_t il_length = 0;
ASSERT_SUCCESS(urProgramGetInfo(binary_program, UR_PROGRAM_INFO_IL, 0,
nullptr, &il_length));
ASSERT_EQ(il_length, 0);
std::vector<uint8_t> il(il_length);
ASSERT_EQ(urProgramGetInfo(binary_program, UR_PROGRAM_INFO_IL, il.size(),
il.data(), nullptr),
UR_RESULT_ERROR_INVALID_NULL_POINTER);
}
TEST_P(urMultiDeviceProgramCreateWithBinaryTest, CheckProgramGetInfo) {
std::vector<char> property_value;
size_t property_size = 0;
// Program is not in exe state, so error is expected.
for (auto prop :
{UR_PROGRAM_INFO_NUM_KERNELS, UR_PROGRAM_INFO_KERNEL_NAMES}) {
auto result =
urProgramGetInfo(binary_program, prop, 0, nullptr, &property_size);
// TODO: OpenCL and Level Zero return diffent error code, it needs to be
// fixed.
ASSERT_TRUE(result == UR_RESULT_ERROR_INVALID_PROGRAM_EXECUTABLE ||
result == UR_RESULT_ERROR_INVALID_PROGRAM);
}
// Now build the program and check that we can get the info.
ASSERT_SUCCESS(urProgramBuild(context, binary_program, nullptr));
size_t logSize;
std::string log;
for (auto dev : devices) {
ASSERT_SUCCESS(urProgramGetBuildInfo(
program, dev, UR_PROGRAM_BUILD_INFO_LOG, 0, nullptr, &logSize));
// The size should always include the null terminator.
ASSERT_GT(logSize, 0);
log.resize(logSize);
ASSERT_SUCCESS(urProgramGetBuildInfo(
program, dev, UR_PROGRAM_BUILD_INFO_LOG, logSize, log.data(), nullptr));
ASSERT_EQ(log[logSize - 1], '\0');
}
ASSERT_SUCCESS(urProgramGetInfo(binary_program, UR_PROGRAM_INFO_NUM_KERNELS,
0, nullptr, &property_size));
property_value.resize(property_size);
ASSERT_SUCCESS(urProgramGetInfo(binary_program, UR_PROGRAM_INFO_NUM_KERNELS,
property_size, property_value.data(),
nullptr));
auto returned_num_of_kernels =
reinterpret_cast<uint32_t *>(property_value.data());
ASSERT_GT(*returned_num_of_kernels, 0U);
ASSERT_SUCCESS(urProgramGetInfo(binary_program, UR_PROGRAM_INFO_KERNEL_NAMES,
0, nullptr, &property_size));
property_value.resize(property_size);
ASSERT_SUCCESS(urProgramGetInfo(binary_program, UR_PROGRAM_INFO_KERNEL_NAMES,
property_size, property_value.data(),
nullptr));
auto returned_kernel_names = reinterpret_cast<char *>(property_value.data());
ASSERT_STRNE(returned_kernel_names, "");
}
struct urMultiDeviceCommandBufferExpTest
: urMultiDeviceProgramCreateWithBinaryTest {
void SetUp() override {
UUR_KNOWN_FAILURE_ON(uur::LevelZeroV2{});
UUR_RETURN_ON_FATAL_FAILURE(
urMultiDeviceProgramCreateWithBinaryTest::SetUp());
auto kernelName =
uur::KernelsEnvironment::instance->GetEntryPointNames("foo")[0];
ASSERT_SUCCESS(urProgramBuild(context, binary_program, nullptr));
ASSERT_SUCCESS(urKernelCreate(binary_program, kernelName.data(), &kernel));
}
void TearDown() override {
if (kernel) {
EXPECT_SUCCESS(urKernelRelease(kernel));
}
UUR_RETURN_ON_FATAL_FAILURE(
urMultiDeviceProgramCreateWithBinaryTest::TearDown());
}
static bool hasCommandBufferSupport(ur_device_handle_t device) {
ur_bool_t cmd_buffer_support = false;
auto res = urDeviceGetInfo(
device, UR_DEVICE_INFO_COMMAND_BUFFER_SUPPORT_EXP,
sizeof(cmd_buffer_support), &cmd_buffer_support, nullptr);
if (res) {
return false;
}
return cmd_buffer_support;
}
static bool hasCommandBufferUpdateSupport(ur_device_handle_t device) {
ur_device_command_buffer_update_capability_flags_t update_capability_flags;
auto res = urDeviceGetInfo(
device, UR_DEVICE_INFO_COMMAND_BUFFER_UPDATE_CAPABILITIES_EXP,
sizeof(update_capability_flags), &update_capability_flags, nullptr);
if (res) {
return false;
}
return (0 != update_capability_flags);
}
ur_kernel_handle_t kernel = nullptr;
static constexpr size_t global_offset = 0;
static constexpr size_t n_dimensions = 1;
static constexpr size_t global_size = 64;
static constexpr size_t local_size = 4;
};
UUR_INSTANTIATE_PLATFORM_TEST_SUITE(urMultiDeviceCommandBufferExpTest);
TEST_P(urMultiDeviceCommandBufferExpTest, Enqueue) {
for (size_t i = 0; i < devices.size(); i++) {
auto device = devices[i];
if (!hasCommandBufferSupport(device)) {
continue;
}
// Create command-buffer
ur_exp_command_buffer_desc_t desc{
UR_STRUCTURE_TYPE_EXP_COMMAND_BUFFER_DESC, nullptr, false, false, false,
};
uur::raii::CommandBuffer cmd_buf_handle;
ASSERT_SUCCESS(
urCommandBufferCreateExp(context, device, &desc, cmd_buf_handle.ptr()));
// Append kernel command to command-buffer and close command-buffer
ASSERT_SUCCESS(urCommandBufferAppendKernelLaunchExp(
cmd_buf_handle, kernel, n_dimensions, &global_offset, &global_size,
&local_size, 0, nullptr, 0, nullptr, 0, nullptr, nullptr, nullptr,
nullptr));
ASSERT_SUCCESS(urCommandBufferFinalizeExp(cmd_buf_handle));
// Verify execution succeeds
ASSERT_SUCCESS(urCommandBufferEnqueueExp(cmd_buf_handle, queues[i], 0,
nullptr, nullptr));
ASSERT_SUCCESS(urQueueFinish(queues[i]));
}
}
TEST_P(urMultiDeviceCommandBufferExpTest, Update) {
for (size_t i = 0; i < devices.size(); i++) {
auto device = devices[i];
if (!(hasCommandBufferSupport(device) &&
hasCommandBufferUpdateSupport(device))) {
continue;
}
// Create a command-buffer with update enabled.
ur_exp_command_buffer_desc_t desc{UR_STRUCTURE_TYPE_EXP_COMMAND_BUFFER_DESC,
nullptr, true, false, false};
// Create command-buffer
uur::raii::CommandBuffer cmd_buf_handle;
ASSERT_SUCCESS(
urCommandBufferCreateExp(context, device, &desc, cmd_buf_handle.ptr()));
// Append kernel command to command-buffer and close command-buffer
ur_exp_command_buffer_command_handle_t command;
ASSERT_SUCCESS(urCommandBufferAppendKernelLaunchExp(
cmd_buf_handle, kernel, n_dimensions, &global_offset, &global_size,
&local_size, 0, nullptr, 0, nullptr, 0, nullptr, nullptr, nullptr,
&command));
ASSERT_SUCCESS(urCommandBufferFinalizeExp(cmd_buf_handle));
// Verify execution succeeds
ASSERT_SUCCESS(urCommandBufferEnqueueExp(cmd_buf_handle, queues[i], 0,
nullptr, nullptr));
ASSERT_SUCCESS(urQueueFinish(queues[i]));
// Update kernel and enqueue command-buffer again
ur_exp_command_buffer_update_kernel_launch_desc_t update_desc = {
UR_STRUCTURE_TYPE_EXP_COMMAND_BUFFER_UPDATE_KERNEL_LAUNCH_DESC, // stype
nullptr, // pNext
kernel, // hNewKernel
0, // numNewMemObjArgs
0, // numNewPointerArgs
0, // numNewValueArgs
n_dimensions, // newWorkDim
nullptr, // pNewMemObjArgList
nullptr, // pNewPointerArgList
nullptr, // pNewValueArgList
nullptr, // pNewGlobalWorkOffset
nullptr, // pNewGlobalWorkSize
nullptr, // pNewLocalWorkSize
};
ASSERT_SUCCESS(urCommandBufferUpdateKernelLaunchExp(command, &update_desc));
ASSERT_SUCCESS(urCommandBufferEnqueueExp(cmd_buf_handle, queues[i], 0,
nullptr, nullptr));
ASSERT_SUCCESS(urQueueFinish(queues[i]));
}
}